

FOR OWNERS OF THE COMMODORE PET™ PERSONAL COMPUTER

```
A CSD-LIPS PUBLICATION
```

IrT THi三 I三SEルE
Gienersel Informetion
Were still Here
Editor s Notes
Crose Feferenced Memory Mes
Hachine Lansuase $I s$ Faster Than Hou Think
Evolution of a Fuzzle
When 160699
ML I Still Faster Than Hou Think
Stringins tour FET Alons
More Strinse Fttached
Assembly Lansuase Frogrammins
Fobe A Eorder．
Wouins Fround the Ecreen
Hot Its Finds Or Buts
EHGIC Iloes It Better－
Troub leshootins＇rour FET
Time F：eses Quickly
What Makes A Good Educational Frosram
Hritins That Good Educational Prosra A Creative Use for Comeuter Models
PET Files
Mersins Frosrams
Fni 30 by 50 Flottins Routine FET \equiv Round 0 ff

 E日riratter EErGEr－Rm SiE
（see Eack Couer for more information）

The PAFER is piblizhed 16 times mer gear be Gerterbrook Goftware Desims эnd the Lons IEland FET Society at 98 Emi ly Ir iue． Centereach．H＇ 11720 ．Te lephone（516）585－2462．

The FRFER is mai led to subsoribers durins the last week of eoch month exoert．Itme and Ileomber．Gims le oow price $i \equiv f 2$ and subsoription price is $\$ 15$ for all 10 issues of the current volume． Subseriotion orders Ehould be mai led to The FAFEF，Eox Fid：Eset． Eetanket． $\mathrm{H}^{\prime} 117 \mathrm{~S}$ ．
 96\％．FOSTMRETEF：Send all adodess ohanses ta the addess abue．

The FAPER，Centerbrook Goftware Iesishe and the Lors I Gociety are in no mey aseorizted with Commodore Eusiness Manines． CEM is not reswonsible for aris of the oontents of The FAFER un less $\equiv 0$ noted．FET and CEM are tredembrle of Eommodore EusimesE Maohines．

All readers are encourased to sumit articles of sermerel interest to PET users．Matei als summitted must be free of 三ll coprivtht restrictions．All contente of The FAFEF gre comsishted ci 1900 by CSD－LIFS．

USA reresidents：$\$ 1510$ issues．
Hon－USA：$\$ 20$ ， 16 issues rlus $\ddagger 16$ for airmail if desired．
No purchase orders will be acoerted for Eubsoriptions ard keymert must accomesn＇s all orders．Ehecks or more＇s ordere peseble to the

Prawernti＝irn：
Rovertisins rates will be auoted on request．

Dealer＂：

Any store or dealer mes order at leset 5 oories of egoh iseut for retail sale．Discounts can be nesoti．ated based on atartit＇s and dealer commitment．

Software rublished in The FBFEF or dsitributed throush the Excharse are meant to worl in the tyes of machime indigsted．Most proserme were orisimally desistied for the oLI FOM EF FETE but efforts haue been made to gomert moosems so that thes will work on both FOM releases．

Fublisher：Relph Eressler \quad Eteft Writers：Eill Eetoher
Editor
$\mathrm{H} s \mathrm{soc}$ ．Ed：Foy Eusdieker
Uic Gantaluciz
Exchanse ：Char lotte
Ileschanes
HE-

Most of sou roobel know thet AREECO stomsed mulishins The FAFER because of Terry Ladereaus fai lins health．We oue a sread deal to Terry for her worte or The FAFEF：I m Ralph Bressler and I will be Fublishins The FAFEF and attembtins to meet all of its oblisetions． He loins me will be Editor Ious Haluza．

Here or Lons IEland we heve a laret users srous of about 150 members．The Lons I三land Fet Society CL．I．F．E．）hee ween publishins a news letter for two yesre．This issue of The FHFER consists of the best articles from the L．I．F．E．Journal．Eecause mbat of our members are teachers there are a lot of educational articles．

He will be come leting volume 3 of The FRFEF and volume 3 of the L．I．F．S．Joumel with this molication（The FRFEF．We mes hawe to print Eome douk le issues like this one to keer dosts down．Come letins the trensfer from ARESCO to us hes inuolved some tremernous and Lnexperted oroblems；most deel with uarious bureoucracies like the bank：post office and the Internal Revenue Eeruice．
 First，Encourese other uEers to gubsoribe and use The FAFER．Second． write letters to and artieles for The FHFEF and ase others to do the
 mantacturer advertise with us．Money is uery tisht at this time so ant help will be appreciated．

The FAFER wi 11 be mei led as fest as we gan rroduce it．Flesse let us know if delivery modemzenist．If sum haue ant duestions or comments p lease feel free to write or all us．

EGitar＂

Fs＇sour Editor I wort olosely with Relph preverins your hews letter．Eecouse this is sour news letter we we loome your comments， oriticism，and contributions．We ganot oes for articles，but all contributors will regeive one or more software exohanse oredits dewendins umon lensth and content．

The FAFER $i \equiv$ not copuritten $\equiv 0$ all grticles sou contribute remain ＇Hour prowerty．＇rou mes haue sour artiole remulished by zu＇s of the larser pesins mubliogtions．Fhome interested in republishins ang article mes do so by arronsment with the guthor；olesse inc lude a note statins that the article wes orisinelly published in The FAFER．

We zre especially interested in sour comments on our formet． Althoush the L．I．F．G．Journal was done in a two column format，we Wed The FHFEF ts you like it better that way．When we set a proportional sparina letter aujlity printer we will wrobably so baot to a two oolum format．Hhat do sout think？

Thi \equiv i \equiv Eue of The FAFER was produced with a modified version of the CIt LIFF．Future issues will be rroduced with WordFro 3 ，Eo if you Qen prouide contributions on WormPro 2 or 3 di三ks wou will set an Extre software Exohense credit．Hll disks will be returned with mour softugre exchanse prosrams on them．
by Ious Halura
To the le sou convert mogerge thet worked on the old PETs so the will work on the hew Forts．I ve gomei led this orose reterenoed memory mas．It exists as a comeosite from mant different sourees ino ludins the FET Users Grous Hews letter，Iim Futterfields old gnd hem mase Comodores brief old zad heu meses znd whet I ue found from me oun dissins throush dissesembled copies of FET EFGIC．

If sou tes this mes to correot sour oum prostomes sou will then have arosrem that will wort only on the hew Fom FETS．It would be better to have gre prostem thet would worls on both FETE．Remember．
 with．so＝un ogn write smart protrems thet will work with either
 with the old ones．If wou want to zero the kestoond buffer and wett for a key to be pressed on either For set wou should include this line nesr the besinhins of sour prostom：

Then all sou would haue to do to merform the opergtions aboue is：
160 FOKE K， G ：HAIT K，

OLI	HEW
0－2	0－2
3	14
4	
5	
E	15
7	16
8－9	17－18
10－961	$512-592$
91	4
92	5
93	6
94	7
95	θ
96	9
97	10
98	11
99	12
1610	6.4
101	
162－103	$20-21$
104－111	22－29
112－115	80－33
$116-121$	34－39
122－123	40－41
124－125	42－43
$126-127$	44－45
128－129	46－47
130－131	48－49
132－13	50－51
134－135	52－53
$136-137$	54－55

MEGCEIFTIOH

USE jumb

Inout device for prompt supress
Humber of hulle after E CR ©def． 0 g
Fus（also used by IHFUT and FRIHT）
Terminel width umusedy
Gouroe oolum sognims limit
Indirect index for STG，ANIT，FOLE GOTG
ERSIC innut buffer
Boar between quotes + las
Incut buffer pointer：\＃af zubseripts
F las to remember IIMed uariables
㓞F＝strirs result E＝numeric
末日G＝inteser result：g＝f loetins
Flas：list atote．IHTH Ecgr or memor＇s
Flas：subseriet or FH：
Flas： $\mathrm{G}=\mathrm{IHFUT}, \ddagger 4 \mathrm{G}=\mathrm{GET}, \quad$ GG＝FERI
F las：tris sogn or Eomesrison euslustion
Flas：＋＝hormel，－＝surress ouput
Fointer to uarizble restedastack
Fointer to last temmorers string
z－bute ugrigy le revedostack
Indireot imdeces
Zero mese zoretoh red for meth functions
Fointer to stert of EASIC prostans＝\＄日4G1
Fointer to 三t天rt of 三imple ugriables
Fointer to start of arrey ugrizbles
Fointer to besimins of free RHM
Fointer to bottom of strinse（moves doun）
Fointer to tore of strinss cmoves doury
Fionter to toe of augilable RHM
Eurrert mosrem line number

138－139	$56-57$
140－141	$58-59$
142－143	E日－61
144－14．5	E－6\％
14E－147	64－65
14G－149	EG－ET
150－151	E日－6
15－15	7－71
154－15．5	$72-73$
156	74
157－15	$75-76$
159－161	$\overrightarrow{7-7}$
162	80
$169-16$	E1－E\％
$166-171$	84－69
$172-175$	96－93
176－181	94－99
176	94
177	95
178	96
179	97
180	98
181	99
182	160
183	1.1
184－189	162－167
190	109
191	16
192－19	116－111
194－217	112－135
200	118
－ $01-2$	119－120
$218-22$	$136-140$
$224-25$	1967
$2 \underline{20}$	19
27－20	199－20
29920	201－20
21－2こ	203－204
23	
234	205
25	
26	26
27	208
28	26
29	216
246	211
241	212
242	213
$24-244$	214－215
245	$\because 16$
24	217
$247-28$	
玉4－25	218－213
$\underline{25}$	2彑
25	2 Z
25	2 z
25	23
25	

Linに humber for EDr｜

IHFUIT mointer．

Hoddress af currert ẏrigble

HodreミS of ourrert orer Etor

FH：Foiriter
SDF Sor三torn reot

Thriat for FHE
Flogtins \exists oumul
Fointer for blous tr ヨrefer
Flogtiris moint Encumblator \＃1 GFEC：

MErti三Eヨ MEE

Mヨrti
Mヨrti三Eヨ LSE
Sisur of mヨrti三sヨ
Tヨヨ lor 三eries Euslatiori cournter
Number af

Low or der rourodra bute for FHE：

EHFGET routine－sets hext EHSIC Ehヨr Eoter
EHFGOT routinE－rEsetミ lヨ三t ロfヨr ヨuter
EHFGETGHFGMT mirter

Fositiori af oursor ori Eurrert lire

F口inter to Erad af prosronm for tヨかe mrite

Eケヨrヨoter reヨud Error

Lurrert lasical＋i le humber
Eurrert 三ec，zdraEsE GEuige ormmgrody
Eurrert deuice runbにr

Eurrert 三ロreer lire e日－ 4 ）

F口irter to fi l巨rにすに

GEri三l bit 三riott ！nerrot
Homber af blous remeirims to urite
Geri 3 l mor

$256-266$	
267－511	256－511
	256316
512－514	141－143
515	151
516	152
	153－154
$517-518$	
519	249
520	256
51	15.5
522	156
523	157
524	150
525	158
526	159
527－536	623－632
537－538	144－145
$59-540$	146－147
	147－148
541	160
542	161
544－545	163－164
546	165
547	16 E
548	167
549	168
550	169
551	176
552	
553－577	224－248
578－587	593－602
588－597	603－E12
598－607	E13－622
608	172
26.5	173
616	174
611	175
612	176
613	177
614	178
616	181
617－6．19	183
E21	
624	
625	187
626	188
627	189
628	196
629	191
680	192
631	198
6 E	194
63	195
E94－825	684－825
826－1917	82E－1617
	1618－1619

Goratohbad for binger to FETSCII Gon．
6502 stack aree
Tase read error los for gorreotion
TI arod TI事 clook
Matrix goordinete of key domn
Ghift key status（ $1=$ domi）
E look correotion fartor
1．5 iiffy elook（unuEed？
Eas：ette \＃1 三tatus Ewitoh
EEsEette \＃2 三tetus Ewitoh
Keysuitoh FIA ©STOF gnd Fug＋less herè
Timines oonstant buffer
Gwitch： $\operatorname{LOHI}=1$ ，VERIF＇${ }^{\prime}=2$
Status word（ST）
Kewtoogrd buffer mointer ©\＃keds pressedy
Reverse uideg＋las
Keybugrd inmut buf＋たr
IRO interrum uegtor（Hem：fEGEEDId：fEGSG
EFK interrust vector ©
NMI interrupt vector（Hem：$⿻=0 \cos$
IEEE mode
Wumber of chargoters on current line
Cursor los erow．Eolumb
FILE imase for tare Ir
Key imase

Cursor timins coutdown（－20）
Chareter urider oursor

Tigre write
Screen line status table
Losical number of oren fi les
Levice rumber of oren files
Geconder＂addresese of opent files
 \therefore sye＋las
GFIE table lensth chumber of oren files

Dutwot edir deuice es＝enreen
Tare ngrity
Eute received＋las
Fointer in fi lerane trarョfer．
Eerizel bit count
Count of reduradat tape blouse
Cock gounter
Tase write countomin
Tショe butter \＃1 sount
Tシre buffer \＃z court．
Tase leader counter
Write hew buterread error＋las
Write start bitread bit sea error
Fose 1 error los mointer
Fase 2 error oorreotion etr．

Cheoksum workins mord
Cessette \＃1 kutfer
Cessette \＃2 buffer
Monitor vector－

To demonstrate just hou fast meohine lansuase really is in comberison to Essic me ll try to fill all 1006 soreen locations on the FET with all 256 disolesab le ohso eoters as fest as possible．A simele Easio prosrem to do that misht look like：

```
10 TI丮="606606"
20 FOR I=6 TO 255
30 FOF I=32PES TO 35767
4G FOKE I.I
5 0 . ~ H E N T ~ T . I ~ I
GQ FRIHT
```

Try it and sou＂ll see that it is very slow．It＂ll tike over 16 miruets to run remouins swaces．puttins it all on one line ard deletins the warigble reference in the HENT statment will cut of two mitn．）．

An exuivi lant machine larsuase prosram misht look like：

START：	CLI		Clear decimal mode（Freoautionary）
	CLE		Clesr carry f las（Fredsutichmary）
	SEI		Set interrupt dissk le（saves time）
	LIM	\＃	Zero X－resister
	T MF		Trarsfer $\%$ to A （zerg acoumblator）
LIOF：	STA	\＄80106．$\%$	ソ Store
	ETA	\＄8106． F	－char．
	ETF	\＃ 8208.8	－an
	STA	\＄8560．$\%$	，Erreen
	IHN：		Increment X
	EHE	LOOF	1096 locetions done？
	FIIC：	\＃ 1	Increment A
	EHE	LOOF	256 ohar．done？
ITHE	CLI		Clegr irterrust dissble
	RTS		Return from subroutine

The first five statments ョre initial三astion the meat is in the loor．The four STA s sore the oontents of the acoumulator（A）on the sorean in 25 ehreotrer inorements，so four are needed to fill the soreen．Really we fill all 1024 soreen memory looations，but only 1600 Ere diEs layed ber the FET．The brosem loons throush this 65.536 times in less then 2 secords．．＂．Thats 50．a0日en fester！
tou can try this prosern for wourelf be usins the Machine Larguase Moritor．Tyse M 日S3A gest at the dot ard ohange the outrut to：

```
.: gSSA IE 1S TE AE GO SA GI GO
: 9542 60 9n 60 81 9% 60 82 91
: 0S4A EO ES ES IG F1 6G E1 IQ
. ESEE EI 5S E0
. G ESSA
```

＂Gegse starts the orasten．The RTS ©事e日 instruction wes
 FET merusl for more informetion or how to use the FET TIM Moritor．

b＇s Eill Estcher
 the lesson I learned recertly uri le teachirs EHSIG to E arour of fifth and sixth sraders．A matiugted woursster wha dousrot krou that．
 averues ョrid misht iust ョrrive at a sulutiori．

I was teschins a lessarn orn the striris functions．LEFT条 arn RIGHT条． We wrote a simble rrogran ir oroder to Explare them：

```
10 INFUIT F**
20 FRIHT FIGHT&(H#:4)
3G GOTO 10
```

The students then exs lored what hequeried when thes tyred in their names，other wards，seritences，etc．Thes tried includinss spaces． rumbers and srawhics．They tried words shorter triari 4 letters．frid they tried charisins the FRIHT ommmand by charisins the RIGHT⿻三丨日 to LEFT and bu charnsirs the number in marertreses．©If sou are not fani liar uith these strins furnotiorse try experimentins witry this mrosram ＇Hourself．）

We then went \exists ster further arid mede use of the LEN function as well as the RIGHT象 arod LEFT f furiotions．We oharsed line zo to：

As the mumils Esain Experimented，troy disoousred the effect tris simole combiration had．If thés irout MFFK IOHPGOH．for Exanole，the sombuter resromed NSOHMAEK JOH．

So，I save them a citallense．I Esked them discover what sou would fiave to orablem to irmeut for trie combuter to resporid Jimms Certer． Furils aworoEdined the in visious styles．Some experimented directly on the FET arid others morked their arisuers out orn poser as if they
 ouickly，but Eeveral gould rot beck them out af the dead erid allegs
 solution ouickly to try other remes like Gearse MEshimstorn Eriod

 LIHEOLH．

 three letter name whiar comblicetes the formble whior urobect sa

walid．Manc left out the swase atter FEE or inserted a hakher or some other ohareoter as a＂place holder＂：but I told them the combuter had to respond with FEE LIHCOLH ョrat nothims else．Some erterprisinst
 to the left af AEE ．Whi le I heat to admit to maself thet this was a

 as JIMN＇t had
 me over ouer ower to shou their golution．Sure enousth，thes head foumat
 that das，I reweated the leseor for another elase．Wouldrt wou know． one srour of students in that olses also solued the pusyle．These三tudents had di三couered a different solution．Severel weeks later．I mresented the mus le to a teacher s in－seruice olass．Eefore the session wes ouer a trig of teathers had solued it usins a thira \equiv glution．

All three solutions demonstrate some interestins ohsracteristios af Commodore EASIC．chareoteristios that mes heue Eome other oreotical 三aseliostions．

Wetoh for the three solutions and ary other．I gel leot in arn usomins issue．If you find artasolutions wlease let me krow！！

－小トロー，1EGE

Ey Ralmh Eressler
I had ocoseion to want to treat numbers，Epecificelly student srades ss strinse．I warted to set us E seneral Eort routine which would sort a set of data besed orn an＇s field in the regord．Go．I could alphabetize bel neme or reak order the students ber final averase．The sort I worked out wes fast but it would work best if all the fields were strinss rether than numerio．

I set un the sort and everething went fine．The routine would sort on the basis of ant key field and it wes FAST ！bre problen deve lowed which made thimss less than perfect．I have one ver＇s smart student who haserned to have a 100 test auer ase．When the students were sorted with tests as the key field this student alwas went dead LAST．I finally found that the line in my mogrem which oombered the test averases in strins form was to blane．A auick oheok showed that the oombuter considered 100 in strins form LESS THAN 99 in strins form and，in faot，less then everethins down to 11 ．It did show that 100 was sreater then 10．I could not fisure this out．I was stumbed ！ With the he le of JoAnin Domito I how understend the reseor．Ing sou Krow why $?$ Hotuall＇g after 三he exe lained it the छrisuer seemed rether obougus．Tr＇s the followifis ory＇rour．FET and see if sou khow whe：

The rescon．of ounse，is thet the comedrisons are besed on the ASCII walues of eath ohereoter in the strins．The comesison starts at the left most ohereoter in the strins and oontinues untila difference ocours．Ht this point one strins $i s$ the winner＂and $i s$ judsed less than or areater then the other．Hull ohareotere hewe ho Uslue and are，thereforex less then anothins else．

k＇s Ilous Heluza

Using a bubble sort to sort a list of rumbers will show meohine languase＇s blindins saeed．

First some backsrourid on how a buble le sart works．A series af passes are made throusth the clata．Inurins each oess each element is commared to the next arid is swarced if it＇s larser ©i．e．if theyre backwards）．A flas is set each time a swar is mede arid checked after each pass．If no swase were macte the pass is comelete．It＇s oalled a bubb le sort because the smaller rumbers＂bukble us＂to the tor： CActually if the table is arransed in Escerindin order the lareter rumbers sink to the bottom forcins the smaller ones urs．
A small sort misht lock like：

First the 4 is comeared to the 1 isince they re beokwards they re swaped．The 4 is then compared to the 3 and assin they＂re sumbped． When the 4 is compared to the 5 no swan $i=$ necicary but 5 is areater than 2，so they＇re surawed．

This procedure continues for each pass until no swass are made and the sort is then comolete．Gine way to sort 196 numbers between a and 100 （e．s．test srades＇）would be：
 $F(I+1\rangle=H: F=1$
110 NEXT：IF F THEN 100
$A(0)-A(99)=$ Numbers to k ser sod
$H=H o l d i n g$ variable
$F=S w a w$ made f las
I＝General purmose courter
An equivi lant assembly lansuase routine is shown in listins－1．Its efficiency is increased somewhet by sortins from the bottom urs rather than from the tow down as in the EFEIC routine．

In the assembled routine in Listins－1 that is also used in Listing－2，the table of rumbers to be sorted wss set us to reside in the first，and rart of the second cessette buffers．because the routine itself resides in the umer mart of the seognd essestte buffer，the tabile mas have $a s$ mint as 255 entries．Haturally the table may be moved arnuhere else in RAM by charising the 5 tisk le address references．

TRBL，X is the toble．It＇s used like foI with the x－resister beins used as the mointer instead of I．F，the f las in the BHEIC routime， is rew laced by the＇r＇resister．Finslly instead of usins a holdins yariable H one of the $i t e m=i s$ mushed on the stauk gnd rulled later．
 routine cari harnde more if you hawe the hew FoMsj．Mith the mectirne

 Mesative numbers ky usiris multir le wrecisigritechriauss，but trase are beyornd the socue of this discussiori．

 for each sort．arod the medi arn．

 it to sxis af ygur swolicetiors．

ETET LI＇t \＃
LI\％\＃Ge Sot counter for 160 numbers
GiO LIA TAEL，$\%$ bet one item OMF TAEL－1，$\%$ ghe ombere it to the one before ECS HOSW
ENAF FHA
LIA THEL－1， X ETA TAEL：X gnd Emitoh it
FLA Fetrieve the first one
ETH TAEL－1．$\%$ grad Ewitoh it．
LI＇T \＃－1 Get suge made fles
HOEN IER
EHE BO
T＇T＇H
EHE STRT RTS

Ineroment counter
Ione Ell g9 comberes？
If so cheok $\Xi w a s+1 a s$
If 三 Euar use made do it asain
otherwise sort is finished


```
&EEH THE FHHTION EOFT OFTIOH SETG UF H THELE OF FHHIMM NUMEEFG TG EE
EEEH SOFTEI. THE WOFGT EHEE DFTIOH EIUES THE NHNINUH GDFT TIME E'T SETTIF
```



```
1Q IHTH1EQ, (1, %G,18G,122,2,221,121,2,17E,13,72,18G,121,2
```



```
9GT&="G6g@gG"
```



```
110 HE%T: IFFTHEH1GO
12@ FFIHTTI.TI果"BHEIE"
```


All of you are probably familisr with numeric constents（1．2．－3．
 （SQR．TRN，RBS．．．．）in ERSIC．Some of wout mat not be Es fanilizr with string constents．veri $\mathrm{Ebl}^{\text {les }}$ and functiors in FET EHSIC．

What is a strins？Ansthins you tue in from the FET keytonad and enc lose between duotes is a strins．Letters，numbers，srephie characters，even cursor controls gan be included in strinss．©The exception to this $i s$ the auote itself，since it jerves as the strins de limiter．${ }^{\circ}$ Here are a feu exame les of strinss：＂HELLO＂；1．24＂； od od od HELLO ed ad od 123 ．If wou houent worked with FET strinse before，trey tyoins the last exame le on uour FET mreceded bes FRIHT． When you enter the strins from the kenbosrd．the＇oursors down＇will awoer as $0^{\prime} s$ in reverse field．Fut when the PET actuell＇s prints the string it will move the cursor doun three lines．print HELLO，三rid so down three lines before printing the 123.

In the same was that numeric variable nomes oan be used to represent numberse strins ugriable nanes esn be used to represert strinss．String yarizbles have the some format as numeric yarizales．
 wariables can be used ever＂uhere strins oonstants are used in a prosram．In LET，IF，FRIHT，IHFUT，eto．三tatements．For Examele：

10 R $=$＝HELLO＂
20 INFUT B
36［丰＝＂SAME＂
40 IF $\mathrm{H}=\mathrm{F}=\mathrm{F}$ 年 THEH FRINT C丰
50 IF Aक
BASIC contains a number of functions that allow us to menimulate strings．These functions include LEFT事：RIGHT事，MII事，and LEN．

LEFT（＂HELLO＂，2）would return the strins＂HE＂，the two leftmost characters of the string HELLO．This furnetion reduires two arsuements，the first is a strins，the seound a rumeric expression． The arsuements of the LEFT fonction ogn also be yarigbles．Try the following brosem：

```
10 AF="FBCDEFGH"
20 FOR I = 1 T0 E
```



```
40 FRINT B$
50 NEXT I
```

 suessed RIGHT does the Ejne thins ze LEFT Exoert startins from the

The MID fometion readires tho or three arsuments．The first arsuement seecifies the strins to be Exanined．the second Eregifies a staertins looation alons that strins，and the third swerifies the rumber of characters to return．If the thirg rergeter is left out it returns the rest of the strins．For examele：MIIf＂HELLO＂，3， 2 ，uould return the Etrins＂LL＂．

The fonction LEH 三imely returns the humber of oharecters in a swecified strins．LEH＂HELLO＂）＝5．

man＇s times the letter＂E＂wes used，Hou would use MIIf arid LEH furnotions．Tru the followins：

```
5 \mp@code { N = 6 }
101 IHFUIT E; :
20 FOR I=1 TO LENCE%)
30 IF MII&(E&,I,1)="E" THEN N=H+1
40 HEKT I
50 FRINT"THERE HRE"H"E"s IN"Eq
```

The strins functions ョre not onlus useful for exaninins and manimulatins strinses but agn be used as pert of a sime le routine to Eded oursor gontrol to sour brosrems．The followins routine wi ll allow ＇sou to srecif＇s two numbres，If and F ，for the number of lines dour gnd swoes ouer，sou wish to mosition the oursor from the home mosition． Ft the besimins of gour prosrem define the two strinss If grod Ry as：

10	

1060 REM THIS IS THE GUEFOUTIHE

1020 FRINT F末；
1630 FETUFN
Sunoose that wou wanted to print somethins in the fifth row from the tow of the soreen，startins in the tenth oolum．trou would inelude the followins statement in sur prosem：
$\mathrm{I}=5: \mathrm{F}=1 \mathrm{a}:$ GOSUE 1606：FRINT＂．．．．
When FET prints Fi in line 1020，it does not orint any charaoters on the screen．but it does home the cursor then mrint the reduired number of doun znd risht oursors．The semicolon 三fter Fif in line 1020 keers the oursor at that mosition ready to print arythins sou want．

$$
\begin{aligned}
& \text { bes IoArn Eomito }
\end{aligned}
$$

The broblem I would like to discuss arose in a prosrem desished to sive students oreotice manipulatins alsebreic expresions．The reswonse that the students are to enter is an alsebreio expresion in two varizbles and includes three terme．For examele：3x＋5w－zt．Einoe there are mary equivalent correot ansuers，the problemis settins the prosrem to reoosmize all the correot yariations．There are two asproaches to this problem．

Ore aroroach is to structure the exercise in suoh a wes thet the student has only one gorreot ortion for earh entre．For examele，the student could be direoted to enter the coeefioient of the $\%$ term． followed by the coefficient of the $\mathrm{x} \mathrm{H}_{\mathrm{t}}$ term，etc．The prosrem would only houe to cheok the three goefficients．Whi le this areroan eases the burden on the mosremmer，it also oreates a yery artificial三itustion for the student．It the student were doins these exercises with a raser and wencil for the teacher to ooreot．the student would be reaured to determine hot only the gorrect goefticients，but the
correct terms as well．Or the other hand，the teacher would haue ho difficulty recosniziry all the gorrect varigtions of the expeted
 2Y；etc．and they would all be judsed correot by the teacher，but incorrect by the combuter．

The second aborosoh inuolues some work on the rest of the prosrammer．The soal is to enable the oombuter to reooshize a uide Uariety of correct responses．The student is siven a minimum of promoting and must enter hot onles the goefficients but the gorect varoables as well．The student is also allowed maximm flexibility with respect to the formet of the response．

Before continuiny．it Ehould be made alegr thet two strinss are equal only if they are identical ohargoter for ohareoter．While 4 ．
 expressions， 4 ＂， $2+2$＂，eto．would not be considered eduivelent strinss．Neither would＂HELLO＂and HE LLO＇be considered extal （swaces count！）．

Before beins able to check the 三tudent 三resporse all extreneous oharacters would have to be deleted fromit．E＇s extroneous ohorgoters I mean char aoters that are hot heeded，but thet don theesesrily make the response inoorreot．For examele．zraoes mbltis lication symols，parentheses，ete，Fhould all be de leted from the students resoonse．The followins routine will aoommelish thet tesk．

Suboose A年 revresents the student \equiv resporse．
100 REM IIELETES＂＂，＂＊＂：＂（＂，＂）＂
110 L＝LEN（A ${ }^{3}$ ）
120 FGR I＝1 TO L

150 TL $\ddagger=L E F T ⿻\left(\begin{array}{c}\text {（ }\end{array}\right.$ ： $\mathrm{I}-1$ ）

160 TR $=\mathrm{RIGHT}(\mathrm{A}=\mathrm{L}-\mathrm{I})$

170 $\mathrm{H}=\mathrm{F}=\mathrm{TL}+\mathrm{t}+\mathrm{TR}$

$180 \mathrm{I}=\mathrm{I}-1$

190 NEKT I

By the time this is combleted all extraneous charoters will heue been de letd from the student＇s response．The onles ualid ohereotere
 order for $\mathrm{A} \$$ to be a correot reswonse，it should contain an x ，t ，and s＇r term．Each multiolied by the ourreot ouefficient．Another routine is needed to sogn fos，find the varisbles and oheok the ooefficients．

Whi le this routine is desisned to analyse a specific alsebraio expresion，it gan be modified to reoosmize other expressions as well． Combensations would have to be mede for the number of terms in the expression and the ugrigbles that are to be found in egoh term．

The routine，with explangtions follows．HEsume thet the
student＇s reswonse is stored in H a gnd thet all extroneous ohareoters have been removed．$H E s$ me fur ther thet the three recuired

 the correet X＇r coetticient $i=$ stored in ges．

```
10日 FEM EMPRESSIOH AHFL'TZING STRING FOUITINE
\(110 \mathrm{~T}=\mathrm{Q}\)
120 IFLEFTき（觡，1）＝＂＋＂OF LEFT （Hき：1）＝＂ー＂THEN14日
\(130 \mathrm{H}==\)＂＋＂＋ F 丰
146 月末＝二丰＋＂＋＂
150 GUSUE 200
160 IF TDS THEN FRINT＂MFOHG＂： EETUFH
176 FOE I＝1 TO 3：IF CCI）
```



```
180 HERT I
190 FEINT＂RIGHT＂：RETURH
EdG FOR \(I=1\) TO LEHCHo
```



```
20 IF（EF＝＂＋＂or＊E \(\ddagger="\)＂AHII \(T F=0\) THEH \(T F=1: \mathrm{XF}=\mathrm{G}: \mathrm{T} F=\mathrm{G}:\) HESTI
```

 AHII TF＝1 THEN GOSUE 406： GOTO 206
240 IFB：＝＂人＂THEH XF＝1 GOGUESOQ：HERTI
250 IF $\mathrm{E}=\mathrm{s}^{2} \mathrm{~T} \mathrm{~T}^{\prime \prime}$ THEN $\mathrm{r} F=2$ ： GOGUESOD ：HESTI
 OF EF＝＂．＂THEN 260
25 EETURH
260 NERT I
270 RETURH
300 FEM IELETE ROUITIHE
310 TL $\ddagger=L E F T \neq$（ $\mathrm{F} \ddagger, \mathrm{I}-1$ ）

$340 \mathrm{I}=\mathrm{I}-1$
35 EETURH
460 EEN CHEOK EOEFFICIENT
$40.5 \mathrm{~T}=\mathrm{T}+1$
$410 \mathrm{TF}=\mathrm{O}$
$4205=\mathrm{KF}+\mathrm{T}^{\prime} \mathrm{F}$
 $\mathrm{C}=1: \mathrm{GOTO} 440$

440 IFCC $\mathrm{C}=\mathrm{CHEH} \mathrm{C} \mathrm{C})=0$
（T stores the number of terms found） checks first ohereoter of fis，if ＂＋or＂－＂then ox
（＋$i \equiv$ added to the front of H ）
（＋added to end of $\mathrm{H}+\mathrm{F})$
（semnins routine）
（maves sure only 3 terms found，else A末 wrons，return to main prosram） （mokes sure all 3 terms found and returns to main prosramy
（if two tests passed，focreot）
（start seannins routine）
（store one oharoster fo H 束 in B＊）
（if term $+1 . s$（TF）$i=$ not E et to 1 arod \exists＂${ }^{\prime}$＂r＂－＂found then $s t a r$ ． of term－TF set and Xiflas and ＇T＇tlas initialized－continue）
（if TF set to 1 grid＂+ ＂or＂＂＇found End of term．cheok coefficient－ seg Fi from besinningy
（X）found，set $x+$ las to 1 ，delete X ． oontinue som
（T＇found．set＇r＇flas to 1 ，de lete r＇， continue sogn
Ghow chargoter should be 6 to 9 or $\because "$ if 伙 set hext character．
（wrons oharoater－return to 160．）
（ell ohereoters done－return to 160）
（AF redefined with X Brid T deleted）
（realisn pointer）
© 50 bock to 246 or 250
（increment \＃terms found by 1 ）
（term ended－reset．TF to 0 ）
（s Eum of x gnd T ＇ x lass）
©it 2nd oharacter of A末 is＂＋＂or＂－＂ then ouefficient is 1
（returrs numeric sort of Hos）
ct eomegred with uelue stored in coefficient arras if correct，cell in arras set to to indicate use

469 EETUFN
（delete leadins coefficient） ouef＋icient

I．Fri Introduction

by TEvies Fouler

This is a series of articles for the prosrammer who works well enoush in EASIC to set dorie whet needs to be done but who suspegts the PET is caxabile of 三omethins more（ard it certainly is）．

The＇heart＇of the FET is the michorsocessor．It is a netwark af switches arid conductors so arransed that the switohes are set by electrical signals 《the a＇s and 1 ＂s in an incomins word）ard these settinss affect the next incomins urod．Varigus kinds of settinss corresmond to losical＂AHI＂，or arithmetio additions and so for th． The vocebulary＇of words that set the orogessor ard the＇sremmer＇of how the words and the data are ocmbined oonstitute the MACHIME LANGURGE of the micronrocessor．

Humans find machine linsuase almost imbossible to read ard very difficult to urite．Of course，orie mistale car be oatastronitic．So combuter ensineers make a secorid lansusse auai labile which is more human－oriented．This is ASSEMEL＇T LAHGUAGE．It kesrs a orie－to－one relation with machine lミnsuaste．Ming combuters are surelied with a prosram called an $\operatorname{ASSEMBLER}$ that takes aseembly lansuase as iheut arid turns out the eadivalent machime larisuase as outeut．There are assemblers auai lable for the FET but they take a lat af memar＂．He will start without one．

Why bother with $s=s$ embly larisuast at all or The FET does a suod sob with BRSIC and everi koints out merre linds af errore for wou．In asembly lansuase prosranming you will have to do this all for yourself．It＇s a lat of wark；dekustins obr ke veref frustratins：so why bother ？There are three reseons： 1 ？＇rou ger do thinse in assembly lansuase that you cant do in BAGic．2）REsembly frosrams senerally use a lot less memory arid Erace thari bisil does ta do the same thins．3）Assembly prosreme rum much fister．Here are two examoles：

This is a krosram to drem a white freme on the Ecreer．The main
 almost 1 second 〈actually grig to ruri．©The liset line is ibst to sumpess the ready uritil wou hit the sTof．）：

```
10 PRINT CHR*(147):FORI=32TES TOS2BGT:FOKEI, 1EG:HENT
15 FORI=32847TOSST27STEP40: FOKEI, 1G6 : NEXT
20 FORI=3STEGTOSSESSSTEF-1 : FOKEI, 1EET HENT
25 FORI=3:3648TOS26086TEF-40: FOKEI, 1601 NEMT
30 GET<生:IFM%=""THEHES
```

Here is another wrosron．Line 15 reads Es kotes of mothine

 Eommand s＇s e569．

```
10 A=2559:FORI=1T06E
```



```
20 FREIHTCHE&(147)"मit 三R=0:E"
25 GETH%:IFA:=""THEHES
30 IFF*=" "THEN E''GE564:GOTOES
```

```
35 IFH:=[HF&&139THEH EHII
40 INTA169.12E,133.2.16% , 1.133.1.170.168.163
5 6 ~ I N T A 1 6 0 . 1 4 5 , ~ 1 . 2 0 0 . 1 9 2 . 4 0 , 2 0 6 , 2 4 9 . 1 3 6 . 2 4 , 1 6 5 ~
EQ IITTA1, 105,40,133,1,144 ,2,230,2,169,160.145
```



```
90 IATAE.198.2.169.160,145 . 1.202.208,256,96
```

 INTA lines．
 EASIC prosran ciez buteso．＇ret it Executed EG＋EEt you gouldrt time
 16 cec times＋aster！

How do wous stet 三tarted in meohine laretast ？Get a sood book－

 first on EsGe Assembly LEnEusse which is whet the FET seests＂．How there छre mary subh books－loul them ouer arod tove the orie with the Ety le wou liwe．Wher wou set serious you will need the reference the professionsle use：Esw Frosremmins mernel from Mos Technolosy．

 itself to the FET．Wetoh for a reuiew af these buas irn an umomirs i \equiv sute．）

by Gerre Eisner
The FET soreen contains 40 columns from left to risht and 24 rows from tow to bottom．Each seace has a number asoociated with it． Ft the tow left this mumber is 32768；beside it is 32769 and be low it $i \leq 32808$（32768＋40）．The lower risht hand oorner is 33767；this $i=$ the last seace on the Ecreen．These numbers are really memory locations gnd we mes oharse them by usins the Fore command．Hormally a blark soreen would have a ge in each of these loogions sinoe 32 is the FET code for a blank srace．To see how this works tres：

FOKES2768，1：FOKE32769， $2:$ FOKE32日0 3
FOKE x sy $i=$ the oomand to mut the ohargoter represented but the number y in the position siven by x ．In this esee 1 is the gode for A： 2 is for E and 3 is for G ．There are 255 aoseible ohereoters so
 from 32768 to 33767 ．To find the oode for a ehereder tris this：

1）Home the oursor gho thae the oheroter in the Home position． Hit FETUFid．
2）Ture FFEEKS2768）ard hit RETURN．The number you set is the oode for sour chareoter．Eall this numbr s． 3 Elegr the Eoreeh．hit RETURN ghd ture FOEEOTES：Hou should set sour chareoter in the Howe mosition．

FOKE oharses the bonterte af a memor＇s looztioh．FEEK Ehows sout whet $i \equiv$ in \equiv memory logetior．The ohereoter oudes for the FET 三re bricude to this mathine ard gre hot standard．To fill the tor row sou gould：

16 FOFI＝1T046
20 FOFESETGTI ：ES
30 HEMTI
 Each time throust the loot the logetion sets biserer by 1．Ta till the fortom rom alons with the tow rom we oud aded

2 F FOESG日
 add the Eide bordere

50 FOFET BG：FOLET＋3日，ES
6 E HERT T
To obtain the left 三ide border wou started at the zeges lougtion and

 ristrt korder．

To moli
 the screer．

A farther refinement on FOrims borders $i=$ to nest them with
 line under the tore rou in our examele tres：

```
5 E=6%
10 FOFH=0TO1
20 FOFI=1T0401-2䎦
S4 FOlEE2TGT+41**H+I,E
40 HENT I
50 E=16G-E
EQ HE&TH
```

H sets the mumer of rows E alterngtes between 83 thesrts sud 86
 Z $1=$ the ematy Ereoe．

Fleze hote that we have deed an I loow working within an hoon． He moitioned the row of hears first，then pioked ur the 8 sumbol，
 Fold 三tartins moint ohansed when the in ohensed to 1 and the number of FOKE wes redured at the sene time．

The followins is aroutine to aoomelish nested borders with in


```
5 FEIHT"colr)"
10 H=32767: F=38727:C=32008:I=83
20 FOFH=OTO10
```



```
50 E=169-E
EW HE%TH
FQ EiOTOFQ
```

Many times programs require mouins a man＂arourid the soreeri urich often uses the POKE command．The staridard is to use the 2 key for down， 4 for left arid so ori．To use all 3 keys ari the rumber road you would have to use 9 IF．．THEN statements to check the inout arid then add or subtract from the mresent soreeri lociation to move the＂man＇． For example：

```
270 IF F=2 THEN 4'
280 IF A=4 THEN ''F'='r'F-1
290 IF A=6 THEN Y'P=\mp@subsup{Y}{}{\prime}P+1
300 IF A=8 THEN 'r'F'=''P-40
```

Of course，you need 4 more statemerits for the diasanals and one for ＇5＇which usually stows movement．Now this doesmit move the＇man＇，it only indicates which way he should so．A is the rumber from the ＜eypad which is usually inout usiris the GET statement．s＇P is ygur． mosition on the screer from 327E8 to 3S7ET．To actually move trie ＇man＇you would hawe to include a lire like：

310 POKE YP， 87
This uill not erase the old＂man＂for uill it oheck to see where the fion is mouins．Dous Haluza seve me a routirie which does this whole thing much audicker and it is included ir the prosran be low．

10 PRINT＂（c lr．）＂：CLR
20 FP＝33268：${ }^{\prime} \mathrm{P}=\mathrm{F}=\mathrm{FF}$
30 POKE YP， 42 ：REM 42 IS＊
40 GETA
$50 \mathrm{~A}=\mathrm{VAL}(\mathrm{A} *):$ IF $\mathrm{A}<0$ OR A$\rangle 9$ THEN 48
60 POKE＇TP，32：REM 32 IS FLFNK
 40＊SGNくINT（Frs－1．1））
80 IF Y＇P＜32768 OR Y＇P＞33767 THEN Y＇P＝FF
90 POKE Y＇F． 42
100 GOTC140

This routine is shorter and really daes perform its stated function． It also provides a challense！Try to decipher how and why line pe works．

Lesson 1 celle for informetion to be Folkd onto the Erreer for user UiEwins ard manimulation．Oh the old Fod FETE the imese of Eoreon memor＂er wes 4k wide．The hew Foll FETE use the ureer 2K for memors
 exparion．The cure is to set the gadres to a louer uelue deed as Ecreen memory but EOTH machines．

The followirs oharses are hecesser＂：
Line bege：FOHE SE1G0 begomes FOKE SGes

by JoArin Comito

The If．．．THEN statement is one of the most powerful statements in the BASIC lansuase．It enables you to determine if certain coriditions fave been met or not．It is a decisior makiris statemert．performins certain owerations if a conditiori is satisfied，cerformiris cuther ooerations if the corndition $i s$ mot satisfied．The format af the IF．．．THEN statement $i s \mathrm{as}$ follous：
n If［logical Exiression］THEN［BASIC：statement］
$n=$ line number
losical exmression $=$ discussed in text
BRSIC statement $=$ aris valid BHSIC Expression
When an IF．．．THEN statement is encountered in sour program．the logical expresion is ewaluated ky the FET．If the exrresiori is true． then the BRSIC statement follouiris the uard THEN is ogrried Gut．If the losical expression is false，ther uhatever follows the THEN is ignored and the next numbered line of the prosrann is executed．

What kind of BASIC statement $c: 3$ follow the THEH？Aris EHSIC： statement can follow the THEN：FRINT，LET．GOTG，IF．．．THEN．Grt GiGIG． etc．Some statements suoh as IIFTA will be ismored arid others．like another IF．．．THEN become urimei ldy．

What is a logical expressiar arod how do you krow if it is true gro false？The second harrt of the aumstion helrs to answer the first． مart．A logical expression is ari expression whose truth or falsity can be determined．The expressich $4+2$ is true to the FET．kut it is rot really a losical expression．ari the ather harid．we car determirie the truth or falsity of the Expressior $4+2=7$ ．Iri this case we tiaue a losical expression uhose value is false．Generally，iri a $\equiv i m \mathrm{le}$ losical expression．two items are comasred arid a statement is made relating them．The relation betueen the items can be expressed ir different ways．They misht be the same＜＝，they misht be different．
 around（＜）．The follouing are exarmbles of simble losical expressigrs：
 because in each case，assumins ue khou the uミlue at the uariskles，us can determine whetrier or not the expression $i \equiv$ true．They are $\equiv \mathrm{imm}$ le losical expresions，because eacti statemerit contaims orly orie comoarison．

We must also consider compabrad losical exoressicris．Trese gre combosed of twa or more simple lasical expressichs corornected b＇a frll＂s
 （ $\mathrm{A}=1$ OR $\mathrm{A}=2$ ） AND （ $\mathrm{B}=3$ GR $\mathrm{C}=17$ ）．

While the truth or falsity af simple lasical expresiors i三 easily determined，houl c ar we determire the truth uslue of corracurid lasical expressions？The method is similsr to that far eualuatirs grithristic
 would not attermot to do it all ir orm shot．＇rou umuld srour the numbers sa that you evaluated arie comeration at a time acourmins to the order cif owerations rules：first kErertreses，tror， multiolicaticr．thern audditiorn．For exemale：

三ntrimior
1 三：＝토

```
2*3+(1 + 4 * 5)
6 + <1 + 20)
6 + 21
```

27
When evaluating combound losical exoressions，first determine the truth value（truth or falsity）of each simble expression．Then think of $O R$ as addition and AlWI as multiolication．In other words，first you evaluate exaressions in karrmtheses，then RNI＂s，then OR＂s．Here are the＂addition＂ard＂multiplication＂tables for OR and FNI（where T stands for true and F stands for false；．

OR T $=$		AHI	T		
OR F $=T$	OR	FHI	F		FiHI
F OR $T=T$	TAELE	HidI	T		TAELE
$F O R F=F$		AHII	F		

If either one or both of the simble exoressions in an ar statement are true，then the combound expression is true．The compound expression is false only when both simele expressions are false．FiN AHD statement is true only when both of the simale expressions are true．If either or both of the simele expressions is false，then the compound expression is false．

Let＇s evaluate the followins expression：

$$
4+6=2 \text { AHI } 5+7<10 \text { OR } 2 \geqslant 3 \text { OR } 4 \geqslant 1 \text { AHI } 5<6 \text {) }
$$

F	ANI	F	OR	＜	F	OR：	T	$\mathrm{Fi+II}$	
	F		OF：	＜	F	OR		T 3	
	F		OR			T			

therefore the expression is true．
Of course you do not have to evaluate the losioal expression when wou use in IF．．．THEN statements in your krosram．PET will do all the Ewaluatins．However，you must know how to evaluate these expessions so that you can be sure FET decides thinss the way you want them decided．If we tive the same expression as above arnd add a pair of warentheses．we suet a different result：

F	FNII	＜	F	QR	＜	F	OR：	T	FH HI	T	$3)$
F	RNII	＜	F	OR	＜	F	OR：		T		30
F	FND	＜	F	OR：			T				
F	FMNI			T							

F

therefore，the expresion $i s+$ false．You must be sure to include parentheses where they are reeded in order to express what you mean． otherwise sou will hawe surnrisins results．

When would you use comoound losical exkressions iri ari IF．．．THEN statement？Here are a couk le of exank les：

1）You want to be sure the wEer irimut ari iriteser．I betweeri 1 arid 16.

100 IF I＜INT《I）OR I＜1 OR I 10 THEH FFIHT＂TF＇t FGAIH＂ BETWEEN 1 FNII $19^{\prime \prime}$

2）You are lookins for animals．Fi for your zog．＇r＇ou will tabe a panda of either sex．St：but you are orly irterested iri a lior if it is a female．

The last comoonent of the lasical expression to discuss is HOT． NOT simoly reverses the truth walue af the expressian immediately followins it．HUT $4+2=7$ is truE．HIT $4+2=E \quad i \equiv f \equiv l \equiv E$ HOT \＆ $4+2=E$ HVII 3（＝4）is false．NOT $4+2=7$ AHII $3=4$ is true．

You must be careful wher ari IF．．．THEN statemernt is the first． statement in a multinele line statement line．If trie lasicョl expression $i \leq f a l s e$ ，then the prosran comtirues orn the riext rumbered inne．The later statements in the line may rever bis executed．For examole：

10 IF $A=3$ THEH 109：FRINT＂A IIOES HOT EQUFL THFEE＂
20 FRIHT＂THIS IS LINE TMEHT＇r＂＂

If A does equal three，then the orosran will continue at line 1 gev．If A does not equal triree．then the porasran will coritimbe at line ze．Ir either case the second mart of line 10 is mever ericumtered．

Find row，for somethins comoletely differert．This rautine will move a ball around the screen usins the rimmber pad．It avoids the ＂snow＂you setet wheri usins FOKEs arid you heed orly determine it ari

Mロ®F FE BFLLL


```
110 PRINT"|l";
120 F=VRL(F%)
```



```
140 FRINT MII旁(E事:(F-1).2);
150 PRIHT"e":
160 GOTO1GE
```


FOSITIOHIHG G FOIHT OHA THE GCEEEH

玉G＝raves GuEr．

CLEAFIHG THE KE＇t＇BOFFI EUFFEE


```
15 IFF#="'T" THEH EDGUE 1ELE G IHSTFUGTIOHS
1E [ETH丰:IFF来=""THEY\1S
```



```
EG FEINT"Froutrer- rir"
GG [ETE来:IFE:=""THENGO
1E日 IFE丰="'T" THEH Z区
```


 lires

 lauk like thi三．


```
19 GETF车:IFF丰=""THEH1E
15 IFF丰="'r" THEH GOEUE 1EGE G IHSTFUNTIDHE
```



```
Bg FEN Elegr the buf+E% here
GE FEIHT "Fr"u+f=r" r"-r"""
GE GETE车: IFE丰=""THEHES
109 IFE车="''"THEHEG
```


HEu FOHE：FOFE1EG．区
EFGIC ：EE FQFI＝1TGG：GETF末：HENT

STGF FE＇T IISFELE

FOKE144， 8 ：FEN ErGElEs Etor

EHAFT：


```
1日 ""と回鳬`"
2G FOF I =3天TES TO OQTES+OG
SE FOLE I.1GE : HENT
4G FOF I = EGGE TG SGFE STEF 4E
50 FORE I.1GE F FOKE I+SG.1EZ
EQ HE%T
TE FOR I = STET-SG TO SGET
BE FO&E I.1日E : HENT
GQ GOTG GQ
```


UFFEFGLIUEF EFSE

FOYE SG4ES\％		Old FiOM	HEu FOM
$\therefore=12$	－rvaritted		lower CEse
	SHi Ftad	シraxinics	srometics
$\because=14$	Lrロトワi＋ted	LW\％Er ロシEE	louer ロese
	Hin＋ted	10wEr $ニ$ E®e	LHEPEr CSEE

 brat birat af irformation do mouresed

F 1ロッドッ F三i lur＝

Using unicue disk IDs with the Commodore 2040 Iusl Ir ive is a sood idea for many reasons．In some ceses．using uriout Ins is more than just useful．When usins two diske in the dual drive sroblems may oocur if both IIs are the same．If the IIIs are the same then on ly one slook Ruai labilita Mor is written and data mas be lost．In foot，both disks may end up with the same name and the same number of blooks free．A disk with on ly 100 blooke used could show only 200 or so free．The solution to this problem mas be usina the YHLIIRTE command．Better set，use unicue IDs．

by Iloust Haluza

What do you do when you turn on your．PET and its dead blank soreern just stares back at you？There are some basio troubleshootins teohnioues you can use before you have to return it for service，if it＇s not still under uarantee．

Naturally you shouldr＇t start dissins irito your．FET before you ve read this article at least once，ard are sure that you understand the srocedure．If you ve never fixed artothins before or if you re not． mechanically inclined you shouldn＂t start practicins on an \＆ 80 combuter．Let someone else with experience do it，or return it to your dealer．

First be sure that it＇s olussed into a workins outlet and has a sood fuse．＇rou ean slap this ster if you oan hear the hish pitched ＇whine＇the wided monitor sives off．or if wou csm see the reddish shou from the CRT tulae throush the back of the monitor housins．

Turn the PET off and then autickly back on．If the monitor is workins you should see a rendom gettern or the soreen．If you dom＂t， oheok the widec comector after owenims the FET：it＇s the one with 3 rairs of twisted wires commins out of it．It must malse sood contact． If this doesn＇t work give un．The problem is probsbly in the monitor． and there are alwass dansercus hish voltases present there．

Uno lus the FET before owenins the cese．Remoue four sorews from under the＇lip＇of the FET（note：the newest FET＇s with molded geses on ly have two sorews and a sumbort stand in the front of the lower－ half of the case）．CAREFULL＇＇lift the white fort of the cise us（it＇ hinged in the rear．）．Wetch for short wires，especislly the casette oord on older $8 K$ machines．Remove comedors if necessery notins how to reconnect them later．Take the susport s tara from the left half of the lower case and olace it in ore of the sorew holes．This will hold the case owen much like the hood on a foreism oar．

If the CRT was on but the FET s till didn to resond，then oheok that all the IC＂hips＂mounted in sockets are securely in mlace．Tas each one firmly，but don＇t break the FC bogro．Mave sure wou sut all 23 in front，and the seven in back chew FETs only have nime，located in the rear．）．Also check that all four cormectore are on securela．
 if yor PET＇carshes＇when you isr it．It＇s the connector with two krown，two red，and a black wire comins out of $i t$－more ori this later．
 cured．If not try asain carefully rockins each ohio in its socket． Ilon＇t try to lift it out because you＇ll probjbly kend the fins． Remember youre only tryins to insure thet theyre molins sood contact with the socket．

As a last resort you car try swaroins the soratoh mad RAM \equiv with the hish RAM＂s．If thes＂re ked the FET wor＂t come tar．Use the procedure described later in this article，but remember this $i=a$ lons shot：the proklem is robebly in the kom＇s．

If the power sume ly commedor was burned it must be oleshed or rew laced．To clean it remove the connector notins which was it wes on．How remove the small metal contact inside the burned section of the conneetor by mullins on thet wire while pressins the smell lockins tab in back with a soreworiver．Fifter it＇s out，elean the contact surface with fine emory ojer arod kerid it out a little $E 0$ it makes firmer contast，then wut it back in the gommetor．Glean the lower half of the comeotor by lishth sergeins esoh pin．Remove all
filinas to prevent shorts and listhtly tin＂earn oin with solder if you oan．How put the tors half of the obinector or backwards．This was it＇ll make contact with the other side of the wins which should still bie sood．

If the kroblem persists lift the main losic board usins the procedure desoribed later．Check the solder ioints for the somer sumply comiector on the bottom of the PC board．The heat from the connector may have melted the solder and caused a bad connection． Resolder it if necessary．

If you were experimenting with the user port ard are now howins troukle with the casette decks，the user port，chansing character sets，andror the IEEE port，wout mes have blown the 6522 VIA chir．If you know how to remove and insert IG＇s try switohins it with a 652 from a workins PET．Ee careful to keek the chir awser from static electricity sources like sturgfoam．If this was the proklem see your dealer about settins a new 6522 ohic．It shouldn＇t cost more than \＄15．

If some of the characters on the sereern fash or a other Etranse thinss the proklem is probessly in the Ecreen RAM．Hew FETs hewe them soldered in r lace so sou＇ll have to return the bosra．Gra ald FET＇s tris le check the two $I O$ at bosod logetions $C 3$ and C4．Look down the edse of the FC board to find the lettere ard rumbers just like gou would on a meo．If woure sure they＂re makins sood contact then switoh them one at a time with the tor set af morsran RAM E．Use the procedure be low．

If your old FET shows less thin 7167 butes free gou probsely houe a bad RAM chic．Look ung and trimle check the two suspect RAMs in the table be lou for sood contact．Turn it on asain，arad if it＇s still out swas them with the uneer RAM＂s．

FREE	MEMOR＇T＇	4	1
7167	to 6144	II－1	II－8
6143	to 5120	II－2	II－7
5119	to 4996	JI－3	JI－6
4995	to 3072	JI－4	11－5
3071	to 20448	JI－5	II－4
2647	to 1924	JI－6	JI－3
1023	tor	JI－7	－11－2
Sor	Pad	JI－E	JI－7
＜Sor	RFM．	C－3	$\mathrm{c}-3$

This table shows the locations of the pair of suspect RAM＂s．Check the markings to see it they＇re tuse 6550 （ 24 pins）or 2114 （13 wins）． RAM＇s marked TMS－4045 are the same $a=2114$ s．Suas the suswect RAM＂s one at a time uith the unoer RAM＇s（ 3167 to G144）．Carefully lift the chim out of its socket ky slouly prying it uk on both sides．Fe very careful not to bend the wins．When insertime the ohims back in the sockets make sure the small key or dot faces the same way as the others for prower orientation．Ffter wou ve swawed orie．close the PET and turn it on．If the number of free betes $i=$ larser，but not． T167，then that RAM $i=$ bagd marl it with red rail solisth so you carn rew lace it later．If the mumer is smeller，check the ohios for－ prower alismment．If the mumer is the ssme，then swas the other one． If you were swawins the soreer RAM the slitohes will disaboear and free memory will come down wher you ve found the bad one．

This procedure will sive wou the meximum amount of memor＇s until you can reolace the deffective RAM．If you set different numbers of

三atrinmar－

 altogether：the intermittert chim mas couse mrasran errors．

You should be able to obtair either ture af RFM Ghir from wour
 Radio Shack for $⿻ 三 丨 11 . \mathrm{Fsk}$ for
 only have to return the main lasic boarod for soruice．If tre moritar
 sinks set uarm after the FET Fas beeri ori for a while．theri the rorak lem is arn the main logic koaro．＇Gu can remoue it toreturr it to sour dealer for rewair or rew lagemert by remouirs tra 3 三rems trat
 after remouirs all four cormectors or tre boro 三lors with aris
 with your dealer kefore remowiris the bogrod．

k＇s Raloh Eress ler．

There are mant reasoris why sou mistht want to measure time uhi le usiris your FET．Sometimes wou wヨrit to wit same time between two三uerts such $E=$ the erid af the instruction for arosram and the kehsimmirns af its execution．In some prosrams you misht warit to know how lons the user toge to do somethins or limit the time for a certair mrok lem．At times it is immortant to time the executiari of三tatemerits in a prosradi．Other \equiv ters in a prosrem must be delayed to

The ESz2 FIF dewice has Eeweral differmet elocks．some of which

 $i=$ to use a \equiv imble time wastins FGF．．．HEXT loon．This is not exact जrid ċrinct ke tsed to time Everts．Ari exsmisle：

190 FRIHT＂REAI THIS QUICKL＇t छINCE IT WILL DISAFFEAR！＂
 206 FOR $\%=1$ TO $2460:$ HE $\%$ T
 360 FRIHT＂（elr）I TIOLI TOU TO REAI FFET！＂

Thi \equiv mrasran uill mrirt the first lime，unat about 3 seconds，olear＊
 the loge＝out Ean control the delay．Each 40 a iterations of the loon

Gri the FET the ugrizkle TI \ddagger is resrved to meacure time in hours．

$$
T I \neq " 9 G E 60 "
$$

If sou set the clack urfern you turr the FET ori．theri wou uill be able
 the time ther the strins returred will represert the time since the FET has bear turned ori．Ta time the exacutiori of a prosram you could：

```
19 TI聿="6@gege"
```


This would sive the elased time between statements 10 and 300 in the form $\begin{aligned} & \text { bouv．Remember that this string may hand led as any other．For }\end{aligned}$
 Etatements or since the PET has been turned on．

To time Ehorter intervals the variable TI may ke used．This clock mezsures time in＂jiffies＇which are $1 / 60$ th of a second．TI cannot Ene set direuctly but is afferted by setting TI象．To time the above prosrean in iif＋ies you mistht do the following：

```
10 TIF="0601964"
304 ET=TI : PRIHT ET
```

If FET مrints 309 it means 300 jiffies or 5 seconds have elarosed between 三tatements 10 ard 309.

Both of these krosirans reset TI to zero and so interfere with the Lse of TIF for keewins the time of day．To avoid doing this you can：

```
10 ET=TI
306 ET=TI-FT: FRIHT ET
```

Ey doins this we record the time before and the time after the statements and subtract to set the elarsed time．This is a most common awolication of timins short time intervals．This method has a ardewback related to the fact that if midrisht strikes before the timins is done TI becomes a and the ET uill be negative．To avoid this，add the following statement to your prosram：

310 IF ETC9 THEN ET＝ET＋24＊60\％3
This adds 24 hours worth af j iffies to the nesative number to set the true elaosed time in iiffies．

In common usease these are the on ly clocks needed．You misht want to be aware that other ciocks are auai lable．

F＇	（59E5）	
F＇EEK	（5964）	
FEEK	（512）：口la	ROM
FEEK	（141）：Hew	ROM
FEEK	（513）： 016	F：CM
F＇EEI	（142）：H	FCM

FEEK © © 14）：Gld FOM
FEEK（143）：HEu FOM
counte in units of 256 mioroseconds
ourrits in urites of 1 microsecond ogurits in uritis of 18 mirutes． courits 0 to 86 iri 24 hr s．
sourtes irlurits af 4 secs，counts 0 to 25 ir 18 minutes．increments every zes iiffies
incremerts ewery jiff＇s counts 1
to 255 ir 4 seconds

Gre interestins awolication is to use the WAIT command．For examole for the old FETs：WAIT 513． 3 will wait a while and excerimenting with the last rumber will imoresee or decrease the wait time．This command ajri be used with aris of the locations aboue．

ba Johnn Comito

There are three key words in the title of this article：
deuctional．combuter，and prosram．In order to answer the auestion moed in the titles the word sood must be asooiated wi th esch of the three key words．In other words a kiece of software is a sood educational combuter prosman it 1 it $i=$ sood educationalle 2 ）it $i s$ ssood＂to present the lesson on the computer：3）it is a sood prostrent

The lesson mesented must be pedsacsically sound．As educators you have bean making this tave of evaluation reveatedly；when looking at text books，filmatripes preparins tour own lessons，ete．A lesson presented on a computer should meet the same \equiv tandards as a lesson mesented viz arts other medium．The foots bresented must be acourate． The concerts develowed andror reinfored must be elear and ourrect． Correot student responses should be rewarded wi th more Ebectacular results than wrong answers．To maty prostems use the reverse arimeisle which zetually enoursaes students to reswond with ingormet answers．rou are in the best position to evaluate the soundness of a lesson in sur subjer zrea zogordine to gour eduational whi losophe．If the ombuter prosram does not meet your－ Etandards，then it is not a sood educetionsl combuter prosram．

The seond key word in the duestion is combuter．A commen is
 It Ehould not be used to imitate an＇of these items．It is a waste of time and effort to take a sood leseon from a textbook and transform itso that the words apear on a TV Ecreen instead of asor．The comeuter should be used to bresent leseons in was that they canot be presented in a texthook．The mrostriil sould take full aduantase of
 Eound fist combution．End Etorese of larse Emounts of data．If an otherwise important goncert is alosed ouer beguse the computations involved are too come lex and numerous then dee the oombuter．If it
 reactor，use a oombuter simulation．If drill and breotioe lessons are bor ins to Etudents，use the combuter syrabios Eound and samins
 best was to meant a towio is by elaborete animation，perhase under Etudent oontrol．combined with immediate feodbod is more aporomiate，then use a comeder．It the combuter ean enhance a leson then use it．If tou only use it to imitate other media already at sur dizosel．then youre wetins your time and brobably mones．

The last of the key wore $i=$＂prosim＂．In some was sood morememing oen be the most imertant of the three oriteria on the ather hand it on be the esiest to correct it it is lacking．One a lesan has been deve loped that will be bresented on the ommeder，the equations worked out，the sequence of imase determined，the tye of animetion deaded umon，eto．int must be turned into a workins prostem．Without this ster there will be nothins for the student to
 Ewecifiotions oen be turned ouer to arostmmer for oding．Still． it is not enoush to heue a working mosarain．Af potentially exoellent
 oitfalls are in four aress presentation materigls on the soreen． progesins Etudent resmones，ineftioient mosemmins and mosram
mairtargace．The first three morolem areas are arogent when the prostain $i=$ rumitig，the last wher an attemet $i s$ made to modif＇s the prosten．Hasin I mould live to stress that while poor prosraming ean seem to ruin a suod lesson，the prosramming oan be gorreoted by arother prosramer if need be kut no amount of prosr anmins can Esluase gessorn that does hot meet the first two criteria．

Gome of the probleme in the mosentation of materizls or sereen maresement are：hot elegring the acreen at the besinnins of the prostam zl lowins meterigl to Eroll off the tow soreen．forsettins to zuitoh from lower gese to srobice or vige verse or forsetting to turn off the reverse field mode．Whi le these problems are ease to Gorrect，unorreeted they male \equiv messey presentation．

Frother prosteming problem oonoerns the wey in which student resporees are handed．The prostermer must anticipete the tupes of قnguers the student wi 11 prouide．The prostam must be able to had le all these possible resworses．Droe trose howe been set uo for articiested reelies gnother trew must be deuised to hand le the unexpeted responees．If the mosrem $i=$ expeotins ari interal inout， Fow sure to meok thet the inmut $i \equiv$ an inteser．If you use the inmout as a duisor，be sure that it is hot zero．Use an invot routime that
 presed with no other irmot．After determinins the ture of ingamomizte response the student has used．print a messase exs lainins the response heeded，dont leaue the student suessing．

Inefficient prosraming mey or mes hot be a problem devending on hom inefficient it is．There gre two wess it obn be inefficient： interms of speed of execution；or interms of．memory used．If the prostem $i s$ Ehort to besin with，then it does not matter if it usetes memores．Ori the other hand if the prosrem threatens to exceed $\mathfrak{F k}$ ，ways must be found to cut ant wate of memor＇s．Froklems concerning ExEdtion zreed are relatively rare．but if the prosraming is so inefficient thet the student must wait for resporses from the oombuter，ther the inefficiencies must be removed．If there are so mate celoulations that long response times are unavoidable，then a messase should bue printed on the soreern to that effect．It is much more oomfortins for the student to krow that the combuter is working and uill return with a response，than to uonder if the system has areatied．

Froblems of prosrem maintenance will not be apoarent to your－ studerts，but will be to wou if wou trey to reyise your prosrams． These prodens deal with the struoture of the roosram．use of REM三tetements．efficient use of 三ubroutines．Etc．

Doud prostamins terhicues oan be learned．Ileve lomment of sood Educational Eoftware dererns uson sour imasination and oreativity． The microcommater gan be \exists ver＂y ujlugble alassroom asset，use it to its foll motentigl．

I＇Jofrin Comito
Go wout oume ne with a terrific idea for an educational prosram， it is sound redasosically grod it will make sood use of the computer＇s三recial pomerg．Tou also have an alsorithm that will set the combuter to garre gut sour i dea．How do wou turn wour ides and Elsorithminto zood arosram There gre Eeverel fertors that will

I will discuss is prosem orsanization．
Marts besinnins prosamers are overwhelmed，or even frishtened by the thousht of hauins to write a whole prosr an．There are PEEKs and FOKEs，all kinds of varisbles，nested loose，dursor controls，and man＇s other details to worry gbout．Once the prosram is written there may be robleme debussina it or truins to modify it．There may be numerous goto statements transferina control to different parts of the prosrem so you can no longer follow its losic．If you haven＇t worked on the prosm remently．mous find it very hard to remember whet you did and whe．The solution to these problems osn be found in ＂struetured arosremimine＂and＂tos－doun desisn＂．

When using the＂tow－down aroroch to prosraming，the larse number of details that seem overwhelmins are ismored until the very end．Fin examele would be relogatins from sour present place of residence．trou wouldnt worry about the color of the switche lates in the bedroom first．＇rou would make the much broader，fundamental decisions first．＇rous misht decide on the country，the asuming you chose the USA，wou would next se leot the state，an area and werhaws a Esecific sohol district．These first，tow level decisions are relatively simble to make and many of them may be decided by external circumstances－－job location，for instance．The next level of decisions misht involve choosins a price ranse for the house：a bui lding and the number of rooms．It is not until after the simples broad decisions have been made that suou start worryins about deoreting individual rooms．Even when you reach this room level of decision miking，you would not start wi th the color of the Ewitche lates．Hou would z tert with a more basio decision，such as decidins between ear la american and french provinoial．Iesisn your－ prossem from the tor doun．Iecide on the a major sections of the prosesm，but don＇t worry about the details until later．

How do sou deoide what sertions are needed？Think of the prosram as a series of tasks that the combuter must perform．Some of these tesk misht include kositionins the cursor：setting student input： printins corrective messases displauins the sameboardi eto．How Ehould these various sections be arransed？structured prosraming brovides the answer here．The idea behind structured prosraming is to have a relatively short main prosrani followed by a series of Eubroutines．Each subroutine verforms one seecific task．The main prosem aots as the conductor of a Eymbhory or chestrai as a traffic controller：a seneral directins an invasion．once the prosram has been orchestreted，the main srosm simely calls the subroutines as they are needed．The main prosram will look like an ordered list of task to be performed．There are not a lot of goto statements sendins control all ower the elace．Control is switohed to the subroutine， but as soon $a s$ the task is performed control returns to the next statement in the main prostran．

Since eat eubroutine performs on ly one task，the subroutines are relatively indevendent of each other．Hot all the rouitnes have to be develowed for the mosmeni to besin running．At a very ear ly stase of develoment the prost animisht look like this：

```
ga FEM MAIN FROGRFM
90 H=1
1004 GOSUE 2000 ra FRIHT IIRECTIOHS
110 GOSUE 1000 [a FOSITIOH CURSOR
120 GOSUE 3060 ETGET IHPUT
130 gosue 1000 f FOSITION curgor
140 OH H G0GUE 4000.5000 [a FRINT X%O IN ROX
```

```
150 GOGIE EOQG G EHECK FOR NIN
160 IF H=1 THEH H=2: GOTOG 11G
170 H=1:GOTO110
200 ENUI
210
1000 FEM EURGOR POSITIONING
1010 FFEINT"CURGOF FOSITIOH"
1020 RETUFH
2060 FEM IIFECTIONS
2016 FREINT "HOW TO FLRH'T."
2020}\textrm{FETLIFN
3006 REM INFUTT FOUITINE
SE16 PRINT "GET INFUT"
3020 RETUFN
4606 FEM FRINT X IN BOX
4010 FRINT "'x"
4020 RETURN
5 0 1 0 6 ~ R E M ~ F R I N T ~ O ~ I N ~ B O X '
5610 FRINT "0"
5 0 2 0 ~ R E T U R N
GODG REM EHECK FOR HIN
G010 FRIINT "CHEOK FOR WIN."
602g IF HIN=1 THEN GOSUBTGGM E FIRENORKS .
6 0 3 0 ~ R E T U N : H
TGUE REM FRINT FIRENOFKS
7010 FRINT "FIREWORKS"
7020 ENII
```

Even thoush mone of the subroutines have been deve loved，the program ogn be run．You ean cheok the + low of the prosram．You oan make Eure that the prosram actually sets to all of the subroutines at the risht time．Now sou garn start workins on each individual subroutine． AE exoh subroutine is deve lowed it will reslace the FRINT statement that merely tells suod that sou reaned the subroutine．You oan urite三nd debus eath Eubroutine indiuidually and elace it into the Etrusture of the prosran．Ileve lowins gour prosrem in this manner has seversal adobntases．The details are left for the end and hauing each
 debuscins and inderendent Eubroutines gen be used in different prost ヨme．There छre severョl difterent methods of addins subroutines
 Tool kit．If wou laok the Tool kit see the grtiole in this issue atout mersifis prosr ans．

Arother imbortant ster in prosran deve lownent is the use of REM or remart Etatements to document sour prose an uithin the prose am itselt． These REME gre orotizl if sou do not interd to deve lop the prosran in one sittins．Hithout them sous mas rot be able to tell what you were doins last time．Since these stetements tale ur memory sou may have to remoue them as the prosrem setz bisser．still it is better to include them in the bestinins．

UEins the sustestions siuen here will made the deve lowment of those soud educetionsl prosrems much eseier．The eseier it is to prosten the more aros ame wou can mrite．

For the last year I have used my FET to do basic research in deve lomerital biolosy．Models of bi losical sustems have been run on comouters for many years．The usual purnose has been to test the effect of warious assumbtions and to set results to be combsred with reality．Finother and a rather difficult aworosoh is to use combuter models as a younseter uses some tows－to sharoer skille and to siain an insight into relationshifs embodied in the tourmodel．For example，a toy orarie will tik over if the boom is down arid the load is heauy．Playins with a toy orghe will sive a feel for the relationshio：the more vertical the boom．the heauier the load as be without tiowing over the orzne．The mathematioal analusis of this relationship is not difficult but the ohild meed knou nothins about it＜nor，for that matter，need a orㅋne arerator know any tristometry to ocerate his machine safely）．Humans know a lot ajout nature． Only later does the theoretios analusis oatoh us to susport this know ledge uith theor＇s．Hot all knouledse gomes this wes，but it is a ＇natural＇way－a mode of imestisetion that is comfortakle for our－ swecies and one that hes been mrettey successful．

One proklem I work with is the relationshic between oells of ar orsanism whion result in the deve lowment of metterne．We know oells have identical senetio mosyams suidins their behouior by directins their interactions with their environment＂uhich．of course．oonsists mostly of other oells）．Fut in seite of their identicel instrustions． they behave as if each oell had uniaus bersonsa instrustions like olayers in a marchins band－the outcome is aredictakle pattern of hish precision that aboesars in skite of merturkations from outside the organism．This is imeossible to explain in listht of presert． Know ledge even thousth we do knou at least some of the processes suins on inside cells．

The model for this situation is a cellular gutomaton＇．This is grn array（I stick to two－dimensionsal sheets）of individusl machines＂． each controlled by some sort of prosramed interaction with the envirorment（which ogsists partly or entirely of other such machines）．So far the results houe beer erigourssins．The main difficulty is presentins the user with imocrtant information in such a way that one can deve low the rules resultins in prediotable catterns．The rules are embodied in 3 ＂transition matrix＂creally just a fancy takle）common to all oells．The matri\％allows the oells to find out what to do next under all sets of possible erowiromental barameters and all mossible internal states．Our vrosrean diswlyse the＂state＂of each cell as ari inteser 《a－gy ary the screen．We oan transform intesers to sumbls urorn oombra so thet the ese egn eseily see patterns develow．A segond dizs las shows the state af a elock＇ within each cell－bialosical rtiothme are mobably augry immotyt element in the dev lomentel secuence of grimels and m lints．The transition matrix is also disk layed on ommand oat lesst ore pase at a time，beosuse the whole metris hes tog mbry elements to fit or the soreen comfortasly）．Fris of these displass ear be modified by the users as easi ly as you oen modify text ort the FET E sereen．The modifications then kocome eart of the model from that moment orn．The soal of the user $i \equiv$ to malse atmeition matris thet meets eertain readirements of eattern．stability and resporse to amerstive interference．In other words the model mimics risture．

The work is still in an ear ly mhese．Eevergel understaduates at Stone Erook have done inderendert wort arm one ar more af these orosrams and have develowed tronsition matrices for a rumber of interestins and sismificant catterns．Interestinsly enoush．シraduste students have not shown as mush + lexibility and interest in this work －and，of course，faculty are even more mystified by the whole idea．
 minicambuter MODCOMP IW）to rur them．

Our real brosress besern whern we trensferred the wort to E FET 2061－8．The rich srawic repetoire grad gcreen addressable feature made the FET the best fersonal computer for the job．We have stone throush mant versions of the or isinal prosrems．More and more af the routines are written irn \exists asembly lansuase．Cur latest version is entirely in assembly．It is a joy to run exceot for a bit af ruisance in the FILE．LOAD，SAVE routimes which Comodore never meart for us to mess with．The speed of the routines is so sreat thet we have had to put in WfIT seauences to slow thinss dour．We 三re soinst to olay around a bit with sweed verus user responses this oomirs year．There is mokably an oftimum ranse．Ftter all．the kiaf playins with the toy orane wouldret learn very muth it the orgne either exploded or the load flew to the tore of the boom at the instarit the Kid towehed the oontrols ！

I have learned marng thinse from writins these prose ans：for examole，it is worth spendins a lat of eriersy and inseruity ari was the user osn erase something just siven to the prosrowi．＇rou must be able to＂back un＇so to speak evern thoush it is ravely needed． Remember how you felt when you took the wrons turn off the ravkway？ You could not baok wo and corect your error．You were perialized by the system ！you had to continute down the urons road until you oould fisure out some was to set back on the track．Nothins osn turn off the enthusiastic user faster than not beins able to escowe from some run that has oboviously sone wrons．When you urite assembly routines you have to provide all the polite responses the FET madees when sou are workins in ERSIC such as allowins you to delete or chanse the response to an INPUT．We have also found that a prosram to be used repeatedly oarn（and should）have fewer arid shorter mrompts－but they should be consistent in reduirins the seme kind of response in each case．If you call for a number in one case and a letter in another． make the oromots very different in aroesrarice by makinst one in cawitals and the other in \＃？or somethins like that．Users learn to work very fast but make mistakes if their responses are not prover ly cued．

If you are interested in more details of this works with reference to biolosical works，there is a summsry in the FERSOHAL COMFUTING FROCEEDINGS of the RFIFS HATIOHAL COMFUTER COHFERENCE，19TG，rastes 187－191．I mould be hases to talk to arionge interested in tresing out comouter－run models in this mode．
Frotat= Forirter Li三tirn三

To list a prosram to a printer coneoted to the FET s IEEE mort －••••

OPEH4，4：CHI4：＂Title＂：LIST
This uill prouide a title for＝ur listins．On the FETMEM printer sou Gar enhance the title bey using：

OFEN4．4：CMI4．EHFE（1），＂Tite＂：LIST

After usins the FET for a urii le you besin tor realize that to Explait its＋ull wotential wou meed more than the standard BFSIC： Gommends．$F E E K$ and F ank E buecome second rature arid everi a few short． mavinine lerisusse routines may oreer into nour prosrams．The PET file oommands are indesmensible wher usins almost aris af the auai lable merimherel devices．These commerids are mecessary for listiris mrigrams or the mrinter．The FET krimters also mine extensive use of these GGmmands for formattins data sErt to triem．Fi le commands must be used when env loyims the c：Essette tase deck for date storase arid the disk drive for rarosran recordins or data storese．

This article assumes thet mot everyome hise $⿻=1295$ for a disk but
 the use af the tile commands with the towe deck．Eince printers and di三ks are kesimmins to firn their uas irto the hernds af more meon le三ri ヨrticle dealirs with these devices arod their fi le commands would

The FET EFGIC fi la commonds 三re listed be lan．In triese commarids LF
 irnout or outrout artigru．FH is the fi le name，grod VL is the uariable list．

OFEH	Initielizes a file for tse by the FET
CLOSE	Tells FET to remoue a file from use
FRIHT\＃	Writes ḋta ta C ＋ile
IHFULT\＃	Reads dista from a file
GET\＃	Gigts che oharacter at a time from a file
CMII	Sernds EFSIC＇s outrut to a fi le
ST	Fecorrds the status of $1 / 0$ onerations

QPEH LF：IM．IO．FH

This oommernd tells the FET to serid information to a partioular． device or retrieve it from thet dewice．Gris the LF must be sivern but it is best to swecify all the ourameters．LF can ke betweeri and 255 kut only 16 ti les cevn ke aken at arice．This is maris more than youd will ever need to aben et are time．IU tells the FET uhich devioe to Eddress as follous：

```
0 = F'ET LeyboEr`d
1 = fir\equivt cassette drive
2 = secornca cassette drive
S = F'ET screerm
4 = FEET mrinter
8 = F'ET disk.
```

Fctually 4 to 15 address the IEEE wort
If not smecified IV deftults ta 1 ，ar the first tave urit．for the Ir a qution IO mas hawe the followins walues：

```
@ = reaud fi le croly.
1 = ur.ite fils cral=.
z = urrite fi le uitt% ar, Erig Of+ Tave marker.
```

The FN is used to name data files when they are recorded on tane．It is not necessary to use a file name but it he los prevent reading the urons data file．If FN is swecified as＇Class Data＇the PET will search a tare until it finds the file by that name．The LF，IV，IO can be combuted expressions and FH can be a string variable．OPEN

OPEN 1．1．1 OPENS file \＃1 to urite to taoe deck \＃1 OFEH 1．1．6 GPENS file \＃1 to read form tame deck \＃1 OPEN 4，4 OPEHE file \＃4 to outrat to the rointer．

Remember not to forset commas．Also，if you want to srecify a file hame sou must include all other parameters．

CLOSE LF

This command removes the file from use and outwots any characters stored in the buffer to the tawe and writes and end of file marker if the taoe was being used．To urite to a fi le and then read from it later you must olose it first．Failure to CLOSE a file before OPENing asain oan be a fatal error．

FRINT\＃LF．YL
This statement outiouts the variable list to the indicated file． The file must be OPEN and IO must＝ 1 for writing．Be sure to spell out PRINT\＃kec：ause ？\＃is not lesal．This command will write into the fi le exactly what PRINT would rut on the soreen if you handle it correctly．It is socid aractice to follow a PRINT＂command with a FRIMT just to check to see what data is beins sent．Examine the followins examoles：

OPEN 4，4：PRIHT\＃4，X Will print on the porinter the string rewresented by x
OPEH 1，1，1：PRINT\＃1． H Will write the number represented $b=A$ onto tawe deck \＃1

INFUT\＃LF．VL
IHPUT\＃reads data from a fi le and assisns the data to the variable indicated．The file must be OPEN to read（IO＝0）．There are three wroblems which may interfere uith successfully reading data from a tase．What is read usins INFUIT\＃must be EXACTL＇r what was written usins the FRIHT\＃command．If there is a difference an error will occur．Do not INFUT\＃a strins of characters over 79 in lensth since this will close the file and not allow any more owerations．Finally， you may use INPUT\＃to read more than one variable on a line but do not $u s e$ FRIHT\＃to write more trian ane．

INFUIT\＃2．	H．HF：FG	This will read the variables indicated with no prok lems．
FRINT\＃2．		This uill cause the above INPUT＂ to malfunction and DATA will not be read carrectly．
FRINT\＃	H	This is the correct way to urite
FRINT\＃2．	NF	the three variaboles onto
FRINT\＃Z．	FG	that IHFUIT\＃will read them

GET\＃LF，VL
Just like the GET ecmmand this will arak one character from a file at a time．The best was to use this is to only GET\＃a string variable since a number carn be read as a string but not vice versa．This oommand works well for readins IATA from art file especially when you arent auite sure wart the data iE．GET\＃uill not stow automatically at the end af a file．To solve this oroblem always ur－ite a oharacter at the end af sour date files and then oheck for that character．

CMI LF
This command allows the FET to commuricate directly with a file． When BRSIC does somethins it sends whet it has done to the oweratins system．The operatins sustem usustly responds by printins information or the soreen．EMI redirects FHSIC s outwot to a file．For examble：

```
OFEN 4.4 : CMII 4 : LIST
```

will cause the listims to be output to the printer and not to the screen．After you gre throush create a S＇HTAK ERROR to set thinss beok to normal．

ST－Status uord
This yariskle $i \equiv$ reserved to tell the status of ary $1 / 0$ oweration after it hes been performed．For examble after loadins a orosram from tave $s T$ should edual 0 if there were no errors in readins．The welues ST mas tave during towe Iro are：

4	short bilock	d to read prosram
8	lonst block	tried to read prosram as data
16	trirecoverats le read error．	FET unab le to read your tisoe．
32	checksum error．	cilean tawe heads
64	end of fi le	seftul to determine it sou
28	erid of tace	e at end of file

To cheok the end of \equiv tare you could use IF（ST）RHI 128 THEN．．．． The followins prosizu illistrates the use of some of these commends．It also corrects for two proklems which olasued old FETS but were corrected in the new．

```
10 %IIATA"
106 FOKE 243,122 : FOKE 244.2
105 OFEH 1,1.1
110 FOR H = 1 TG 500
129 FRINT##. H : GOELI 506
136 FRINT#1, 倍: GOSUR 5GG1
140 HEXTHN : CLOSE1 : FRINT"REWINI & FRESS FHNY KEY'"
150 GETM1专:IF <1%="" THEN 159
160 OPEN 1,1,0
170 FOE N = 1 TO 506
189 IHF\IT#1. X. z%
196 HEXTX'H : GLOSE1 : FRINT"ENI OF IDEMO" : EHII
541 FEM****BLIFFER C:HECKER****
516 IF 29 (= FEEK(625) THEN 5%9
529 FOKE 59411,53 : FOR 2G = 1 TO 149 : NEXT : FOKE 59411.61
5301 29=FEEK(625):FETURH
```

Line 169 makes sure that the data file header is written oorrectly．The subroutime at 50.0 to 530 is also imoortant．When usins FRIINT\＃FET daes rict immediately urite data orn tape but stores it in a buf＋er．This kuffer cari contain 191 chareacters arict uheri it is full the FET dumbs it orta the tare．Eetween Each＇dumm＇af the data is an irterblock sy，ar，a oh＇ssical soace ori the tace．This sac is important urien readins the dEta kack．Sometimes the sao is toa small and the data uritteri carinct ke read bact correctly．The sukroutine inc luded iroreases the swo ketureri klacks．For the secord oaseette the十口l louins charnses sticuld be made：

```
196 FOKE こ43,5E : FOKE 244.3
510 IF こ\Xi<=FEEK<626% THEN 5%0
5% 2G=FEEK(E2G):RETURN
```

The wrosran kiow is from Commodore and will show the data from三ris data file in $8 \underline{0}$ character fumks．


```
100 FRINT"D --6HON THFE---N
110 FFINT"FOIT Y'TUNE IIHTA TAFE IN
120 FRINT"EASGETTE #1 ANI RENIHI IT.
190 GOEUF 490
146 FFINT"睤HE THFE WILL EE REAI FHNI EHOWNT TO TOUN
1504 FRINT"IN EO CHHRACTERS HUHFS. WHEN TOU WHNT
```



```
17Q FRIHT"FEK IF 'TOU WHNT MORE IATA TO EE SHOL|N.
180 GOGUE 480
190 OFEN 1
200 FF:IHT":]":H=6
210 H=H+1:FFIFHT"HOHFE #"H
200 FOR T= 1 TO E0
206 GET#1.EF
240 IF ST % 6 THEN 356
250 IF FSC(EF)=13 THEN FRINT" ";:GOTO27G
2G0 FRIHTEF;
270 HEKT J
200 FFEIHT
200 EETH:
30日 IFH&=""THENS20
310 FRIHT"MORE?";
320 GETH$: IFH$=""THENS20
301FA末="'"THEFHFFIHT :GOTO216
346 EHII
S5G FRINT : FRIHT"STATUS NORII IS:"ST
EQ IF &ST AHI 4 THEH FRIHT"SHORT ELOLE
37日 IF (ST) AHII S THEN FRIHT"LOHG ELOCK
SGQ IF EST AHII 1E THEH FRIHT"RERII EFFOR
390 IF ST` HHII S2 THEN FRIHT "EHEDKSUM EFROR
406 IF &ST` FHII E.4 THEH FRINT"EHII IF FILE
410 IF ©T% HHI 128 THEH FRINT"EHII OF THFE
420 EHII
40日 FRIHT:FEINT"FEESS AHH't' KE't'
440 GETH末:IFH}==""THEH44
450 FFINT: FETIIFH
```

Tトロ F.FF•EF: $=:=$

The ability to merse prosrens is of areat importanoe to the serious software deve lover．Eeins able to combine to prosrams or add premoros ammed subroutines saues time and frees the prosramer for more oreative work．Before disoussins some of the wess to combine prosrams，it is immortant to detine two terms．Mersins osn indicate two serarate grod different functions．Absendins mears addins code to
 the middle of the prosrem．Weavins will perform this function．Es well as aroendine and $i \equiv$ therefore，the more wowertul tool．

The simblest wey to weade recuires ho extre harduare and ho soecial preparetion of sour prepared Eubroutines．Froar Em your． Eubroutines so that they fit on the tor 18 lines of the soreen when listed．How follow the procedure outlined be low after reoordins a coses of sour routime on taoe：

1）Horne the cursor and LIST the progremi soroll the LISTins to the ver＇s tor of the soreen

2）Flace the gursor on tor of the REAII＇and tise LOALI．Fress FLA＇t when asked and then hit FETURH．

3）When the REAI＇t is siven home the cursor and hit FETUFH for eoth line of oode on the soreen．

Fsain，this method requires no sweoisl harwere or software and will weave sour subroutine into the main prosram．The bis disaduantase is that the routines must be ver＇s short．

Frother was to weave mrosmams is to use the Librarisn prosram but II．J．Inovid in the Fraril 1980 issue of Miorocompotins（s．172）．This Emazins 25 line prosrem allows you to prosr am sour routines and then reoord them usins the sreoial method in the prosram．This saved routine is not comozible with the normal FET saue but is read bet the Librarian prosram．This prosram resides at the besirming of any Brosrem zrid performs severel useful functions．It hes automatio line numberins as well $\exists \mathrm{E}$ the weauins feature．Libr grign will also save a bart of a brosron bewteen eertain line numbers．For the prosrem and a comelete desoriotion see the zrtiole mentioned．

Fhother way to merse $i=$ to use the MEFGE prosrem in the Februsry
 zopend and worls with normally oonstrusted and SHEd prosrams．This prosrem does reatire the Commodore 2040 Insel F lowes Ilisk Ir ive．If dou already have the drive the prosrem $i=$ sreat but $\$ 1300$ would be a lot to esey for this fumbtion alone．

Thore zre two remainins wese I know of to aroend subroutines to Existins main prosrems．In reselitu，zependins is auite adeduate since sou are only addins Eubroutires in men＇s deses．Subroutines oan and 三hould ato at the end of the mosaran arowes．Ses the artiole ．．．Good Educational Frosrem＂in this is三ue．${ }^{\circ}$ The Eseic Frosrammers Tool kit is the egsiest wes to aroend that I knom of．This piece of

 recuires ho sweciel morearetion of the routimes which ogn aleo be
loged Es mormel prostams．
The last method of zsperdins rostems or subroutines asain fedures ho zegigl hardugre but does redure thet the routines be Feciglly merered．Dhoe the towes heue been prepored the routines an be added to aris prosran．The Ereaisl preparation，therefore，is hot a sreat disaduantase．Follow the direotions be low exactly as writtern．This method is ountributed by Larry Tes ler and Jim Eutter「i三ld．

Eter 1：Fremgrins the Subroutine
a）Enter the routine from the keybord or Lonl it from teve．
b）Fut a blank tase in the assette reoorder．

dy How relae FECORI and FLA＇t．
E）When the cursor aroears tywe ？＂FOKEG11，G＂：FRINT\＃1：CLOSE1＊ and hit FETURN．

Ster 2：Mersirg Subroutires
E）Enter or LOAI the prosr am to which the routines are to be mersed．
b）Flace the tase with the mrepared subroutine from Stew 1 in the recorder．
c）Tinge OPEN 1 and hit RETURN．
d）Fress FLA＇r．
E）When the tere stors tyre［clr］［4 down］．
＋）Tコロe FOKEG11：1：FOKE525．1：FOKE527．13：？＂［home］＂but RETURN．
s）Tyse［home］［6 down］．
h）THaE FOKEG11，1：FOKE525，1：FOKE527，13：2＂［home］＂and hit FETUFH．

The tawe should start and continue until a griNTRX ERROR or oOUT of DATA messase aroegre between the two lines you entered．If a messare does not arpesr after a reacongble time press RUH GTOF．The merse is riow somplete．
i）Ture close 1 ＂and hit RETURH．
Tou can how LIST the prosram and see that the aspend has been done． Usins one or severel of these technicues sou ear deve lop your own Eubroutines and add them to bour prosr ams as needed．The Frosram Exohanse hes mens of these subroutines auai lable under the titles of Iseful Fot 1 and Useful Fot 2 ．Each paokase contains 5 to 7 routines no ludins auto line numberims ard de letins and reveatine keys．

Althousht the PET does not have a built in high resalution mode， reasonable olats can be dotained by usins the auarter sauare blowis．
 of points for srershs．Eharts，simes．etc．

Usinsthis method $i=$ made essy uith the routime cislled bu the
 been proper ly initialized．osllins the sukroutine in line sg with the x and＇r＇coardirates irt the yari ak les x arnd＇r＇will eitrer set or＇reset
 uill be turried ari cseto：if 2 is mesative trab moint uill be turned off 〈reset〉．Nothins will hawkun if 2 is zerc．
 block as shourn in Fisure 1．Fodiris the uelues at the glocis to ka turned on in aris chargoter sives the oharavero ocide．The arrat Ti： contains the FOKE velues for the correct orarecters for esoh charaoter cicide．

Settins ar resettins ary merticular blows is dorm ber adotirs ar subtractins the value af the blow from the ouromt ohoreoter ooda． Care must ke taken ta assure trat tre klack to ke set corresety isn＇t already set（crr reset）．

 loow looks ars the oforemter Gode arod Etares it irik．

 walue from the character code arid ForEirat the correct uElue kjok irto location L ．

Li三tirn－
Fi＝1troin

FEM EQ E＇t 50 FLOTTIHG FOUTIHE
2 REM E＇T IMOG HFLUEA
3 FRINT＂3＂；

16 INTAS2． $126,124,226,123,97,255,296$
11 IIATA 108，127，225，251．98，252．254：160

16 GOGU50 ：BOTOIS

52 EETIIEH

by Ious HEluza

Arisone who has tried PEEKinst at FASIC on an old FET knows that wout always get a a no matter what location you look at，whether that location contains a 6 or mot．Commodore and Microsoft did this to tres to protect their EASIC．＇rou mes be able to understand why this hawens by locking at the disassembly listins from the FET kelow：

IIEEG：	20	INIE	ISF	LEIE	Evaluates a formula an if it＇s G ta 65SES muts it in e． 9
IGE9：	FH	16	LII＇t＇	\＃	こera＇r＇resii
IGEE：	C 9	619	C：MF	\＃车C．	Cheoks if MSE i m ketueeri fceu grid
IIGER ：	96	$0 \cdot 14$	ECC：	I6FS	車E1 ¢Es．trearis to FEEK 三t EAEIC）
IGEF：	C：3	E1	C．MF＇	\＃${ }^{\text {c }}$ E 1	arid if so muts E irn＇r＇EFSIL $i \leq$
II6F1：	96	63	ESC：	IEFE	locstiors
116F3：	E1	68	LIIH	（EG）＇T＇	LuEs trie FEEK
116F5：	F8		TA＇r＇		Fut it in＇${ }^{\prime}$
IGFE：	4 C	87 II2	TMF	Hegr	Load the flastiras mairt．
					Eceumbl letorr witho＇T＇

You see in 丰HEEF that a check $i=$ made to see if woure truins ta look at BAGIC and doesrot do the FEEK if you are．Thi clefeated by the routirie be lom：

93F8：	20	10	I16	TSE	\＄TETG	Evaluate	expressiorn
03FB：	F0	c10		LIT＇	\＃ 0	ここro＇r＇	
03FI：	4 C	FS	IIE	ITMF	FIEFS	Frict jumme	in atter check

This routine is mut into the ver＇y tor of the secorad cessette kuffer and ciarn be loaded usiris the moritorr arid turims ouer the line sa it lacks like this：
．M E3F8 63FI

or by usinst the followins EFSIC routine and LSR instead af FEEK．
10 IIATA 32． $208.214 \cdot 160.6 .76 .243 .214$
$20 \mathrm{FOR} I=1016$ TO 162Ξ ：REFI $N:$ FOKE I．N：HE؟T
30 FOKE 1，248：FOKE 2．3
kis Riss lh Eress ler
The FET has some serious aroblems with seeminsly simkle math kroblems．The simolest illustration at tris proklem is to tuke：
 FET uses natural lase to do Exaonentiation（arid saldare roots）arn error of a few bits was introduced．In this ejse trie errorr wis larse enoush to Ehou．but in Eame cisess it ismot．

I was writins arosran that was sumposed tor mrint Futhasarearn
 integer lensthts．The mogsran uss surfosed to primt the uslue at the
 atieck the value af the hurooterimse to 三ee if it uss ari irteser I used the statmert：

106 IF IHT（H＇TFQ）＝H＇T＇FI THEH FF：IHT＂＊＂

 more amaziris wes that the FET pririted 5 for the ualue af H＇riPQ but did rict recosinize it as $5 . ~ I$ ve fourn the follouirs EtEtmert ugras ketter：

PET RABBIT

Load, Save, Verify, Execute
8 K in 38 seconds versus
PETs 2 Minute 45 seconds, plus more!

High-speed Cassette Routines work with $8 \mathrm{~K}, 16 \mathrm{~K}$, or 32 K new ROM PETs which have the new Commodore cassette deck (like the external version which sells for $\$ 95.00$). Note: If you have a new ROM PET with the old style lift-top deck, everything but the high-speed cassette routines will work.

- Auto repeat of any key held down, toggle character set.
- RAM Memory Test, convert \#'s to hex and decimal.

12 Rabbit Commands

Note: Rabbit is 2 K of machine code at $\$ 1800$ for 8 K PETS, $\$ 3000$ or $\$ 3800$ for 16 K PETS, or $\$ 7000$ or $\$ 7800$ for 32 K PETS. (Specify one of the 5 versions.)

Cassette and Manual - \$29.95 (Add $\$ 5.00$ for foreign)

Eastern House Software

3239 Linda Dr.

Winston-Salem, N. C. 27106

Finally, MAE - A PET DISK-Based MACRO ASSEMBLER/TEXT EDITOR
 Works with 32 K PET

- Works with 2040 Disk, and can drive 2022/2023 Printer, and/or RS232/20 ma Device thru User Port.
- 100\% Disk Based, 100% Machine Language.
- Macros, Conditional Assembly, and a new feature we developed called Interactive Assembly.
- Coexists with Basic, Auto character repeat, Sorted Symbol Table.
- 27 Commands, 26 Pseudo Ops, 5 Conditional Ops, 38 Error Codes.
- Creates relocatable object code on disk.
- Assemble from Memory or Disk.
- String search, search and replace, and inter-line edit.
- Auto line \#-ing, move, copy, delete, renumber.
- Labels up to 31 characters - user specifies length.
- Includes extention to PET monitor (disassemble, trace, etc.), Library of PET ROM locations, Relocating Loader, plus more.

Manual, Diskette, U. S. postage - $\mathbf{\$ 1 6 9 . 9 5}$ (Requires completion of License Agreement Write for details)

РЕt/Свм UNCRASHER ${ }^{\text {™ }}$

WHAT IS IT? - UNCRASHER ${ }^{\text {w }}$ is a two button device that allows PET/CBM users to regain control of a cursor that's been lost due to programming errors. BASIC programs may be recovered. Machine language programs in the second cassette buffer are not disturbed either.
WHICH PETs/CBMs? - UNCRASHER ${ }^{\text {w }}$ is for all PET/CBM computers that use the "NEW" Version 2 ROMs. (Older model PETs should use the ITS NEW-CURSOR".)
DOES IT WORK? - You bet!!! See the detailed review of the types of crashes and the concept of recovery in the first issue of Compute.
INSTALLATION - Simple, completely illustrated instructions using only a Phillips screwdriver ensure installation in minutes. No soldering or modificaitons to the computer.
OPERATION - Just follow the simple steps—push the buttons and reset the stack pointer-and PRESTO. recovery!
And all this happens without powering the PET/CBM down and up.
WHY UNCRASHER ${ }^{\text {" }}$? - No first class computer such as the PET/CBM should be without this capability. Whether your fancy be programming, business, education, or hobby, hobby, UNCRASHER's saves you time by uncrashing your slip-ups.
AVAILABILITY - Now in better computer stores, or order direct from ITS, made by the people who brought you NEW-CURSOR *.

INTERNATIONAL TECHNICAL SYSTEMS INC. P.O. BOX 264 - WOODBRIDGE, VIRGINIA 22194 customer services -
VISA RICHMOND. VIRGINIA (804) 262-9709

COMPUTER PROGRAMMING:

 BASIC for MicrocomputersBridge the Classroom Literacy Gap.
A series of five full-color filmstrips and five cassettes prepared by Arnold and Seth Friedman. This is a systematic approach to the essentials of the BASIC language. This series can be used at any grade level to teach the universal concepts which apply to the PET, TRS-80, Apple or any microcomputer.

PART I Getting Started

PART II Mathematical Operations
PART III Loops and Subroutines
PART IV Original Programming
PART V Techniques and Flow Charts
Available for $\$ 84.00$ for the set. Also available for preview.

EDUCATIONAL ACTIVITIES

Freeport, NY 11520

PET ${ }^{\text {M }} 2001$ STUDENT WORKBOOKS

For Classes Beginning to Program COMPLETE TEACHING UNITS

- Step-By-Step Instruction
(Teachers Can Be Beginners, Too!)
- Daily Lesson Plans, Classwork \& Homework Worksheets, Quizzes
- Hands-On and Hands-Off Exercises
- Group and Individual Assignments

FEED ME, I'M YOUR PET ${ }^{\text {TM }}$ (Beginner-1)
LOOKING GOOD WITH YOUR PET (Intermediate-1)
TEACHER'S PET (Plans, Quizzes, Answer Key)
Workbooks are \$4.35. Quantity discounts available.
TEACHER'S PET is $\$ 4.00$ or FREE with workbook orders of 25 or more.

EDUCATIONAL SOFTWARE

- High Quality Teaching Skills
and Programming Skills
- Graphics Used to Enhance Learning

REMEDIAL MATH PACKAGE (84 Concepts)

 MATH IN SCIENCE SERIESSigned Numbers, Physics, Primary Primer, Elementary Grade topics and More. We Will Send a Price List.

COW BAY COMPUTING

Box 515 - Manhasset, NY 11030
F.O.B. Manhasset, NY

B.C. COMMUNICATIONS

The Family Computer Shop

- Software Swapping
- Factory Authorized Service Center (Same Day Service)
- Commodore Word Pro III
- Word Processing Service
- Computer Products leasing with buy in percentage
- Factory trained personnel
- Centronics Printers at very special prices

Riley Enterprises announces....
TOP Quality Vinyl Cassette Holders
12 Capacity in Black or Brown \$2.80
16 Capacity in Blk,Org or Lime 3.50
Add $\$ 2$ for shipping orders under $\$ 20$
Other types and colors are special order.

75 Pearson Street
Portsmouth, NH 03801 603-436-6564

- Consummable supplies at discounts
- Reference manuals and magazines available
- Atari and APPLE III 'hands-on"' demos
- Commodore's new 80 character Computer
- NEC \& Qume Electronic typewriters
- Special interfaces

207 DEPOT ROAD, P.O. BOX 228 HUNTINGTON STATION, NEW YORK 11746 TELEPHONE: AREA CODE 516 $\square 549-8833$ or 692-2735

AMERICAN PERIPHERALS

First in Education

Have You Seen?:

- MTU's new Visible Memory
- 3M's Datronics card reader with our special test marking software
- Commodore's new 80 column CBM with BASIC 4.0 and WordPro 4
- Centronics' new 737 high quality printer
- Xerox's Diablo printers for letter quality output

Did You Know?:

Atari now has a special 3 for 2 deal for schools

Send for a complete list of our full line of educational and business software.

3 Bangor Street Lindenhurst, NY 11757
(516) 226-5849

COMPUTER LAND of Nassau

"'The Full Service Computer Store'
Come SEE what you've only READ about.
Hardware...Apple...PET...Atari...Texas Instruments...Cromemco...Dynabyte...computers for personal and professional needs...Diablo...Centronics...Spinwriter... printers and disk drives to complete a system.

Software...programs for ALL the machines we carry...programs for recreation, education and business.

Books and Magazines...Osborne...Blacksburg Group...Hayden...Sybex...Scelbi...or pick up a copy of your favorite magazine.

Computer land 79 Westbury Avenue Carle Place, NY 11514

CENTERBROOK SOFTWARE DESIGNS

'Learning is Fun'"
Remedial Math and Reading
Science, Utilities, and Games
We have over 70 programs in the topics listed above. All programs work in 8 k and there are versions for all PETs. Prices for most programs are in the $\$ 10$ to $\$ 20$ range and special packages are available. New programs are produced every month and custom programming is available.

For a catalog and more information write or call:
Centerbrook Software Designs 98 Emily Drive
Centereach, NY 11720 516-585-2402
American Peripherals 3 Bangor Street
Lindenhurst, NY 11757 516-226-5849

WEST RIVER ELECTRONICS

Can Your PET accurately represent complex mathematical symbols such as integration or exponentiation?
Can you write equations which include Greek symbols and closed intervals?
Would you be able to have your PET display French, Spanish, German or other European languages as they are written?
If you answered no to any of these questions then you need our PET Alternate Character Set ROMs. Our replacement character generator chips do all of the above. In the UPPER/lower case mode the shifted upper row of characters and the numbers are redefined. There are two ROMs, one for the foreign languages and one for math symbols.
Math Character ROM $\$ 75.00$
Foreign Language ROM
75.00

PO Box 605

SWEE-PING"

$\$ 5.95$

CHEQUE-CHECK"
 $\$ 7.95$

> METRIC-CALC ${ }^{\text {" }}$ Turn your
> PET into a powerful stack-oriented (RPN) calculator with many extras! Log, trig, exponential, and many other useful scientific functions in addition to Metric-English unit conversions. Switch between two "keyboards" at the touch of a key. See the stack while you operate. Look at all 20 addressable memories at one time. More functions than calculators costing many times as much. Unlike other converters, this one lets you use results in other calculations! $\$ 7.95$

- BILLBOARD"

Turn your store window or counter into an attention-gettina advertising display! With BILLBOARD, you simply type in the message of your choice (up to 254 characters), then see it march across the screen in aiant, one-inch high letters... even pause, or flash off and on if you like! A real crowd-stopper, and it costs less than a single ad. Order yours today! $\$ 49.95$

MICROSOFTWARESYSTEMS

P.O. Box 1442, Woodbridge, VA 22193

Send check or money order. Allow two weeks for check to clear. VA residents add $\mathbf{4 \%}$ tax. Dealer inquiries invited.

PET' MACHINE LANGUAGE GUIDE

Contents include sections on: - Input and output routines. - Fixed point, floating point, and Ascii number conversion. - Clocks and timers.

- Built-in arithmetic functions.
- Programming hints and suggestions.
- Many sample programs.

If you are interested in or are already into machine language programming on the PET, then this invaluable guide is for you. More than $\mathbf{3 0}$ of the PET's built-in routines are fully detailed so that the reader can immediately put them to good use.
Available for $\$ 6.95+.75$ postage. Michigan residents please include 4\% state sales tax. VISA and Mastercharge cards accepted - give card number and expiration date. Quantity discounts are available.

ABACUS SOFTWARE

P. O. Box 7211

Grand Rapids, Michigan 49510

Ey tolims the inteser velue the round off error is removed form the
 ＂5＂even thoush it $i=$ not exaotly 5 this takes ogre of the round oft error on the risht side．Comestins the humbers as Etrinss remoues the inuisible＂round aff error．

Froblems also exist with the tris functions．Tr＂s this：
FRIHT COS（6）：IF COSC日）＝1 THEH FRIHT＂OK＂
Even thoush it srintsi it really isnt．Fsain STR will do the trick：

$$
\text { IF STR }=(C O S(0) 9=" 1 " \text { THEH FRIHT"OK" }
$$

Comesrins numbers Es strinss should take care of the FET＇s round off error problems．

LIF＂

This news letter will carrs gnnouncements of LIFS meetinss．Since editins，printins and mai lins the news letter tolses some time． ghouncments may not reach everyone on time．F lease mark the followins dates on your calender for LIFS meetinss．

All meetinss are on Thursdass at 4 ： 60 FM at Harborfields HS． Green lawn．Direetions zad more meetins information mas be obtained by osllins（516）585－2402 betwen $7: 00$ gnd 10： 60 PM or（516）261－4900 ex． 191 between $8: 60 \mathrm{AM}$ and 2.06 FH （ask for Falph Eressler．．Ans interested mersons are inuited to attend．Flesee watoh for ohanses in Each issue of The FHFER．

The Harborfields Computer Eenter hes 1 BK old FOM FET， 9 EK new Fom PETS and 2 32K new FOH FETE．We Elso have a 2040 Inel F lopey Irive and三 2022 Tractor Feed Frinter．All you reelly heve to brins to the meetinss $i s$ unicue harduare to show off：software to trade cnot

