
F O R O W N E R S O F T H E C O M M O D O R E P E T " P E R S O N A L C O M P U T E R

A CSD-LIPS PUBLICATION

I n T h i s X s s u e

Genera1 Informati on 2
We-re Still Here Ra Irh Bress ler 3
Editor’s Notes Bo u3 Haluza 3
Cross Referenced Memory Map Bou* Haluza 4
Machine Lan-suaae Is Faster Than Vou Think Dous Haluza 7
Evolution of a Puzzle Bill Batcher 8
When 100<99 Ralph Bressler 9
ML Is Still Faster Than Vou Think Boun Haluza 10
Stringing Vour PET ft lon-3 Jofinn Comito 12
More Strings Attached JoAnn Comito 13
Assembly Lan-suase Programming James Fowler 16
Poke A Border Gerry Eisner 17
Mo m in-3 Around the Screen Ra Iph Bress ler 19
Not Ifs Ands Or Buts JoAnn Comito 20
BASIC Does It Better Ra Iph Bress ler 23
Troubleshooting Vour PET Doug Haluza 26
Time Passes Quickly Ralph Bressler 28
What Makes H Good Educational Program JoAnn Comito 30
Writing That Good Educational Pro-sra JoAnn Comito 31
A Creative Use for Computer Models James Fow ler 34
PET Fi les RaIph Bress ler 36
Mer3i ng Programs Ralph Bressler 40
An 80 by 50 P lott i ns Rout i ne Bo u -3 Haluza 42
PET's Round Off Ralph Bressler 43

Lon ̂ Is l-=tf-iol PET yoc i e+y Mee-fcina

Thursda.yNovember 13.. 1980

Har^bor+'ie Ids Hi-ah Schioo 1

F'u 1-aski Rd arid Ta.y lor five

Green 1 a.ui n _■ NV

Computer Center — Rm 510

<see Back Cover for more information)

U f |- iff X I r- i-f orn'i-s.'t x >_• i- I

The PAPER is piublished 10 times Per year by Center brook Software
Designs and the Long Island PET Society at 38 Emily Drive..
Center-each.. HV 11720. Telephone <516) 585-2402.

The PAPER is mailed to subscribers during the last week of each
month except June and December. Single copy price is $2 and
subscription price is $15 for all 10 issues of the current volume.
Subscription orders should be mailed to The PAPER.. Box 5k'4.> East
Setauket, NV 11733.

Third class postage is paid at East Setauket.. HV 11733 <Permit #
96). POSTMASTER: send all address changes to the address above.

The PAPER.- Centerbrook Software Designs arid the Long Island PET
Society are in no way associated with Commodore Business Machines.
CBM is not responsible for any of the contents of The PAPER unless so
noted. PET and CBM are trademarks of Commodore Business Machines.

All readers are encouraged to submit articles of general interest
to PET users. Mate i a Is submitted must be free of all copyright
restrictions. All contents of The PAPER are copyrighted <C) 1980 by
CSD-LIPS.

Subscription Ra.tes :

USA reresidents: $15/10 issues.
Non-USA: $20/10 issues plus $10 for airmail if desired.
No purchase orders will be accepted for subscriptions arid payment
must accompany all orders. Checks or money orders payable to The
PAPER are acceptable. Sorry.- no bank or credit cards are accepted.

Advert is i n-=* :

Advertising rates will be otuoted on request.

Dea lers

Any store or dealer may order at least 5 copies of each issue for
retail sale. Discounts can be negotiated based on quantity and dealer
commitment.

Software Exchan«>e :

Software published in The PAPER or dsitributed through the Exchange
are meant to work in the type of machine indicated. Most progarms
were originally designed for the OLD ROM 8K F'ETs but efforts have
been made to convert programs so that they will work on both ROM
re leases.

Publisher-' Ralph Bressler
Editor : Doug Haluza
Assoc. Ed; Roy Busdieker

Vic SantaLucia
Exchange : Char- lotte

Deschamps

>taff Hr i ters: Bill Batcher
JoAnn Com i to
Gerry Eisner
Jim Fowler

The -=• u m m ■ 1 980

We r e o + i l l Her e

Most of you pro bah ly know that flRESCu stopped publishing The PAPER
because of Terry Laudereau' s fai Iing health. We owe a iiresd deal to
Terry for her work on The PAPER. I'm Ralph Bressler and I will be
publishing The PAPER arid attempt ins to meet all of its obligations.
He Ip in-3 me will be Editor Bous Haluza.

Here on Lon 3 Island we have a I arse users group of about 15y
members. The Lons Island Pet Society L. I. P. S.) has been rub I i shirrs a
news letter for two years. This issue of The PAPER consists of the
best articles from the L.I.P.S. Journal. Because many of our members
are teachers there ere a lot of educational articles.

We will be completing Volume 3 of The PAPER and Volume 3 of the
L.I.P.S. Journal with this publication (The PAPER). We may have to
print some double issues like this one to keep costs down. Completing
the transfer from ARESCO to us has involved some tremendous and
unexpected problems.: most deal with various bureaucracies like the
banks .■ pos t of f i c e and the I nt erna 1 Revenue '6erv i ce.

As a subscriber you can help make The PAPER work in several ways.
First.- encourage other users to subscribe and use The PAPER. Second.-
write letters to and articles for The PAPER and ask others to do the
same. Third suggest that your favorite computer store.- dealer or
manufacturer advertise wi th us. Money is very t i3ht at this tirrie so
any help wi 11 be appreciated.

The PAPER wi 11 be ma.i led as fast as we can produce it. Please let
us know if delivery problems exist. If you have any c-iuestions or
comments p lease feel free to write or call us.

Ed x t r s Notes

As your Editor I work closely with Ralph preparing your
newsletter. Because this is your newsletter we welcome your comments.-
criticism.- and contributions. We cannot pay for articles.- but all
contributors wi 11 receive one or more software exchanse credits
dependin-a upon length and content.

The PAPER is not copywritten so all articles you contribute remain
your property. Vou may have your article republished by any of the
larger pay in-3 publications. Anyone interested in republishing any
article may do so by arraugment with the a u t h o r p lease include a
note stating that the article was originally published in The PAPER;.

We are especially interested in your comments on our format.
Although the L.I.P.S. Journal was done in a. two column format.- we
used The PAPER’S full pa.se format for this issue because Terry tells
us you like it better that way. When we set a. proportional spacing
letter duality printer we will probably so back to a two column
format. What do you think?

This issue of The PAPER was produced with a modified version of
the CMu WPP. Future issues wi 11 be produced with WordPro 3.- so if you
can Provide contributions on WordPro 2 or 3 disks you will -set an
extra, software exchange credit. All disks will be returned with your
software exchange programs on them.

The F'MF'EIF: . »_-i m m e r 1 S'S©

by Doug Haluza

To help you convert programs that worked on the old PETs so they
will work on the new ROMs.. I've compiled this cross referenced memory
map. It exists as a. composite from marry different sources including
the PET User's Group Newsletter. Jim Butterfield's old arid new maps..
Lommodore ' s brief old arid new mans., arid what I've found from my own
d i g g i n ’£1 t h r o u y h d i s as s e m b 1 e d c o pies o f PET B fi SIC.

If you use this map to correct your own programs.- you will then
have a program that will work only on the new ROM PETs. It would be
better to have one program that would work on both PETs. Remember
that a PEEK at location 56003 tells you what ROM set you're working
with.■ so you can write smart p rograms that wi 11 work wit!-"! either
operating system. PEEK<58883) returns a 1 with the new ROMs and a 8
with the old ones. If you want to zero the keyboard buffer and wait
for a key to be pressed on either RUM set you should include this
line near the beginning of your program:

8 F-PEEK<58883)=K=525-P$367:T=135-P$82

Then a. 11 you would have to do to Perform the opera.tions above is-

100 POKE K .■ 0 : WHIT K,7

L-1 -» < R f -jp e r <=» i-~i c »=* cJ t"1 «=» rriot~- y t'1

O L D NEW DESCRIPTION

8-2 8-2 USR Jurnp
14 Input dhn i op “for* prompt su preso

4 Number of nu 1 Is a.fter a. CR cdef.=0)
5 POS < a 1so used by INPUT and PRINT ’*1
6 15 T ermi na 1 width <unused
r 16 Source column scanning lirni t
8-9 17-18 Ind i rect i ndex for SVS,WHIT,POKE, GOTO
18-98 512-592 BASIC input buffer
91 4 Scan between oiuote f lag
92 5 Input buffer pointer.: # of subscr iPts
93 b Flag to r e m e m b e r DIM e d v ar i ab les
94 f $FF=str ing result.. 0=numer ic
95 i~i $88=i nteger resu It.; 0=f loating
96 9 Flag: 1ist ouuote.. DflTfl scan or memory
97 18 Flag: subscrirt or FNx
98 11 F lag: 0=INPUT, $48-GET, $98=READ
99 12 Flag1 trig scan or compar ison eva. luat i on
100 64 Flag: +=norma1, —=supress OUPUt
101 Po i nter to var i ab1t' psuedostack
102- 103 20-21 Po i nter to last temporary str ing
104- 111 22-29 2—byte variable ps uedostack
112- 115 xfi Indi rect i ndeces
116- 121 34-39 Zero pa.ge scratch pad for math functions
122- 123 40-41 Poi nter to start of BASIC prog tarnS—$0401
124- 125 42-43 Po i nter to start of simple var i ab les
126- 127 44-45 Pointer to start of array v ar i ab IH V

128- 129 46-47 Po i nter to beginni ng of free RAM
130- 131 48-49 Po i nter to bottom of strin zlS- K I f tO M es down)
132- 133 58-51 Po i nter to top of stri ngs (f i i O M e s down)
134-•135 52-53 Po i nter to top of a.va.i lab 1e RAM
136- 137 cr crcr Current program line number

T h ■EHE* P R P E R ■ 4 S u r n r n e r - 1 S ' © ©

o

138-139 56-57 Line number ■for L-UNT
140-141 58-59 Program pointer -for continue
142-143 60-61 READ DATA line number (for errors.?
144-145 62-63 READ DATA pointer (initialized as $0400>
146-147 64-65 INPUT pointer
148-149 66-67 Name of current variable
158-151 68-69 Address of current variable
152-153 70-71 FOR/NEXT variable ptr./'EOR..AND for WAIT
154-15ci r d i * -■ Address of current operator
156 74 Type of comPari son
157-158 75-76 FNx pointer
159-161 i i i j* b'LlR Scratch pad
162 80 Garbage collection routine constant
163-165 O 4 O ‘ jM i «_« Jump for FNx
166-171 84-89 Float in-3 accumulator #3 (for tr i g func.)
172-175 90-93 Pointer for block transfers
176-181 94-99 Float in-3 point accumulator #1 (FACC)
176 94 Exponent + (zero f lag.?
177 95 Mantissa MSB
178 96 Manti ssa
179 97 Mant i ssa
180 98 Mantissa LSB
181 99 Sian of mantissa.
182 "l 00 Taylor series evaluation counter
183 101 Number of bits to shift FAL’C
184-189 102-107 Floating point accumulator #2 (AFAC)
190 108 FALL- AFAl sign comparison
191 109 Low order rounding byte for FALL-
192-193 110-111 Cassette buffer length/Taylor series ptr
194-217 112-135 CHRGET routine— sets next BASIC character
200 118 L-HRuOT routine — re gets last character
201-202 119-120 UHRUET.-'UHRUUT p o i nter
218-222 136-140 Last random number (seed for next?
224-225 196-197 Pointer to address of beginning of line
226 198 P o s i t i o n o f c u r s o r o n c u r r e n t I i n e
227~22b' 199-200 G.P. pointer (tape buffer., scrolling)
229-230 201-202 Pointer to end of program— for tape write
231-232 203-204 Tape timing constants
i’jj Tape buffer character
234 205 Uuote mode switch (y—non '-tuote mode.'1
235 0=timer #1 interrupt disable
236 207 Tape write flag (EuT received.'1
, -j

w O 1 208 Character read error
i—- •—1 u 209 Number of characters in file name
239 210 C u r r en t 1 o g i c a I file n u m b e r
240 211 L-ur rent sec. addness (dev i ce command
241 212 Current device number
242 213 Maximum # of characters on current line
243-244 214-215 Pointer to start of tape buffer
245 216 Current screen line (0-24)
246 217 Buffer checksum (last key pushed.'1
247-248 Pointer to SAVE, LOAD and VERIFV
249-250 218-219 Pointer to fi lename
215 229 INb'T key countdown (number of INbT left.’1
252 221 Serial bit shift word
253 cicicL Number of blocks remaining to write
254 e r i a 1 w o r d buffer
255 Uverf low for FALL to F’ETbL’II conversions

T h e - P A P E R S ‘r- rn rn «=■ t ~ 1 y t ’ U

256-266 b c r atc h p ad f o r b i n ar y t o PET b C11 c o n.
267-511 256-511 6502 stack area

256-318 Tape read error Ids ■for correction
512-514 141-143 TI arid TI# clock
515 151 Matrix coordinate of key down
516 152 S h i f t k e y s t at u s (1 = d o w n)

153-154 Clock correction factor
517-518 1.5 jiffy clock (unused?)
519 249 Cassette #1 status switch
520 250 Cassette #2 status switch
521 155 K e y swi tch PIfi (8T0P and RVS f 1a ss here)
522 156 Timin-sj constant buffer
523 157 Sw i tch: L0RH=1, VERIFV=2
524 150 Status word (ST)
525 158 Keyboard buffer pointer (# keys pressed.'1
526 159 Reverse video flas
527-536 623-632 Keyboard input buffer
537-538 144-145 IRQ i nterrupt vector(New:$E62E,0 Id:$E685)
539-540 146-147 ERK i nterrupt vector (New: $FD17 .■ 0 Id: $0000)

147-148 NMI interrupt vector (New:$C389)
541 160 IEEE mode
542 161 Number of characters on current line
544-545 163-164 Cursor lo=j (row, column)
546 165 PDB imase for tape I/O
547 166 Key i ma-se
548 167 b'w i tch: U=cursor f 1 ash .■ 1 — cursor off
549 168 Cursor timing coutdown (-20)
550 169 Character under cursor
551 170 F la.ai: O=curosr moved, l=blink started
552 Tape write
553-577 k'24—Z48 Scr een line s tatus tab I e
578-587 593-602 Logical number of open files
588-597 60c!-612 Device number of open files
598-607 613-622 Secondary addresses of open files
608 172 F 1 an: a=i np u t from keyboar■ d, 1 —from screeri
265 173 !:':I save f la.-3
6 10 174 GPIB tab le length (number of open files?
611 175 I n P1 u t device U=k e y b o ar d.?
61k! 176 0utput (CMD) device (3=screen)
613 177 Tape parity
614 178 Byte rece i ved f l-as
616 181 Pointer in fiIename transfer
617-619 183 Serial bit count
621 Count of redundant tape b locks
523 L’yc le count tr'
624 Tape write countdown
625 187 Tape buffer #1 count
626 188 Tare buffer #2 count
627 189 Tape leader counter
628 190 Write new byte/read error fIas
629 191 Write start bit,•■‘read bit sê i error-
6:-:0 192 Pass 1 error loa pointer
631 193 Pass 2 error correction ptr
632 194 0=scan, 1~15—count, $4u=L0flD, $oU—end
633 195 Checksum working word
634-825 634-825 Cassette #1 buffer
826-1017 826-1017 Cassette #2 buffer

1018-1019 Moni tor vector

©
The PflPER . u m m e r~ 1 yyu

• •
•

Q

M a j c = h x n e I -=«jr-i -=* •_-* -=■_-=* •=■ i s
F 7 " t •= * r~ T h -==»_t--i V o l j T h~i i r ~ i l <

by Doug Haluza

To demonstrate Just how +3=:+ machine language really is in
comparison "to Basic u.ie'll try -to fill all 1800 screen locations on
the PET with all 256 dis p layab le characters as fast as possible, fi
simple Basic program to do that might look like-'

10 TI4-"000000"
20 FOR 1=0 TO 2bo
30 FOR J=32768 TO 33767
40 POKE -J, I
50 NEXT J, I
60 PRINT

Try it arid you'll see that it is very slow. It •'I I take over 16
minuets to run <removing spaces.- putting it all on one line arid
deleting the variable reference in the NEXT statment will cut off two
rn i n. > .

Fin eoiuivi lant machine language program might look like-'

START

LOOP-'

OLD Clear- decimal mode <Precautionary?
CLC Clear carry flag (Precautionnary)
SEI Set interrupt disable (saves time)
LUX #0 Zero X-register
TXft Transfer X to ft (zero accumulator?
ST ft #8000,X S Store
ST ft #8100,X S char.
STFl #8200,X S on
ST ft #8300,X S screen
I NX Increment X
BNE LOOP 1000 locations done ?
RBC #1 Increment ft
BNE LOOP 256 char, done ?
CL I Clear interrupt disable
RTS Return from subroutine

The first five statments are initialazations the meat is in the
loop. The four STfis store the contents of the accumulator <fl> on the
screen in 256 chractrer increments.- so four are needed to fill the
screen. Really we fill all 1024 screen memory locations, but only
1000 are displayed by the PET. The program loops through this 65,536
times in less than 2 seconds.... That's 50,000";' faster!

Vou can try this program for yourself by using the Machine
Language Monitor. Type •"M 0330 0354" at the dot, -and change the
output to:

. ■' 033ft D8 18 78 R2 00 8ft 9B 00

. •' 0342 80 9D 08 81 9D 00 82 9D

. : 034ft 00 83 E8 D0 FI 69 01 D0

. : 0352 ED 58 00
G 033ft

"'G 033ft'' starts the program. The RTS <#60> instruction was
rep laced by a. BRK < #00 > to return control to the monitor. See your
PET manual for more information on how to use the PET TIM Monitor.

Thif PAPER ■=> u m rn e r 1 980

Th. I c lu“t x on P «_-i zz. le
by Bill Batcher

Don't say impossible to an intermediate student, fit least.- that's
the lesson I learned recently while teaching BASIC to a. ijroup of
fifth arid sixth graders. A motiMated youngster who doesn't know that
something carr't be done.- will explore all kinds of unconventional
avenues and might just arrive at a. solution.

I was teaching a. lesson on the string functions, LEFT# and RIGHT#.
We wrote a simple program in order to explore them ;

10 INPUT A*
20 PRINT RIGHT*(ft*,4>
30 GOTO 10

The students then explored what happened when they typed in their
names, other words, sentences, etc. They tried including spaces,
numbers arid graphics. They tried words shorter than 4 letters, find
they tried changing the PRINT command by changing the RIGHT* to LEFT*
and by changing the number in parentheses. (If you are not fami liar
with these string functions, try experimenting with this program
ycurse If. >

We then went a. step further- and made use of the LEN function, as
well as the RIGHT* arid LEFT* functions. We changed line 20 to:

20 PRINT RIGHT * C fl*, 4 .J LEFT * C R*, LEN (. A*) -4 >

fis the PUPiIs again experimented, they discovered the effect this
simple combination had. If they input MARK JOHNSON, for example, the
computer responed NSONMRRK JOH.

So, I gave them a challenge. I asked them discover what you would
have to problem to input for the computer to respond Jimmy Carter.
Pupils approached the in various styles. Some experimented directly
on the PET and others worked their answers out on paper as if they
were afraid to type in a. wrong answer. Many found the solution
ciuickly, but several could not back them out of the dead end alleys
their initial attempts brought them. I asked the groups that found a
solution etui ck ly to try other names like George Washington arid
Abraham Lincoln. (Try these on your PET. >

Once a. group found a. solution for JIMMV CARTER, the other names
were easy to generate. I sti 11 wanted to give the 'slower"' ones a.
chance to catch u p , s o I decided to stump the •"faster"' groups with a
puzzle I knew was impossible. I knew it was impossible, because I
couldn't do it, and that was the definition I was using. But of
course, I didn't tell the kids it was impossible. I Just wanted to
keep them busy for a. whi le. The problem was to use the same program
and input a string that would cause the computer to respond ABE
LINCOLN.

Whi le at first, this seems to be as straightforward as all the
others, the groups -quickly realized that here was a. challenge of a.
different order. Again, try it yourself. There's something about that
three letter name which complicates the formula which worked so
easi ly for the other names. Of course, kids ciuiokly realized they
could solve the problem by changing line 20, so I informed them that
this w as n o t a v a. I i d s o I u t i o n.

Eventua. 11y.- k i ds were calii ng. me over and announc i ng that tf1~\ey had
solved it. Of course, I found reasons not to accept each one as

Q

“The- PAPER hummer 1

valid. Many left out the space after REE or inserted a hyphen or some
other character as a •'place holder''., but I told them the computer had
to respond with REE LINC0LN and nothing else. S'ome enterprising
students found ways to venerate RBE LINCOLN with one or more spaces
to the left of REE. While I had to admit to myself that this was a.
c lever solution.. I was be ins particularly negative that day., so I
insisted that REE ahd to begin directly under the question mark.. Just
as -J I MM V had.

Well., lo and behold., before the period was., one group had called
me over over over to show their solution. Sure enough., they had found
a way to generate REE LINCOLN within the parameters I had set. Later
that day.- I repeated the lesson for another class. Wouldn't you know.,
one group of students in that class also solved the puzzle. These
students had discovered a. different solution. Several weeks later.. I
presented the puzzle to a teacher's in-service class. Before the
session was over a trio of teachers had solved it using a third
so lution.

Rll three solutions demonstrate some interesting characteristics
of Commodore BASIC., characteristics that may have some other
practi ca. 1 arp 1 i cat i ons.

Watch for the three solutions and any other I collect in an
upcoming issue. If you find any solutions p lease let me know! !

a

When 100 < 99

by Ralph Bressler

I had occasion to want to treat numbers., specifically., student
grades as strings. I wanted to set u p a general sort routine which
would sort a set of data based on any field in the record. So.- I
could alphabetize by name or rank order the students by final
average. The sort I worked out was fast but it would work best if all
the fields were strings rather than numeric.

I set u p the sort and everything went fine. The routine would sort
on the basis of any key field and it was FAST ! One problem developed
which made things less than perfect. I have one very smart student
who happened to have a 188 test average. When the students were
sorted with tests as the key field this student always went dead
LAST. I finally found that the line in my program which compared the
test averages in string form was to blame. Fi ciuiok check showed that
the computer considered 100 in string form LESS THAN 99 in string
form and.- in fact, less than everything down to 11. It did show that
180 was greater than 10. I could not figure this out. I was stumped !
With the help of JoAnn Comito I now understand the reason. Bo you
know why ? Actually after she explained it the answer seemed rather
obvious. Try the following on your PET and see if you know why;

IF STR$<180><STR$<99> THEN ?"0K
IF STR$(180><STR$<11) THEN ?"0K
IF STR$<100)<STR$(10> THEN ?""0K
IF STR$<108><STR$(9> THEN ?"0K

The reason., of course.* is that the comparisons are based on the
ASCII values of each character in the string. The comparison starts
at the left most character in the string and continues unti I a.
difference occurs. At this point one string is the "winner" and is
Judged less than or greater than the other. Null characters have no
value and are., therefore., less than anything else.

The PAPER 9 Summer 1980

M-such i ne L-â_i-=-n_-i3.3e- i s yt i 1 1
F - t e r - - f c h - = ^ r - i ■=• o «_4 T h i r i l - -= :

by DoL4si Ha. luza

Using a bubble sort -to sort a list of numbers will show machine
language's blinding speed.

First some background on how a bubble sort works, A series of
passes are made through the data. During each pass each element is
compared to the next arid is swapped if it's larger (.i.e. if they're
backwards >. fl flag is set each time a swap- is made and checked after
each pass. If no swaps were made the pass is complete. It's called a
bubble sort because the smaller numbers 'bubble u p ' to the top
(Actually if the table is arranged in ascending order the larger
numbers sink to the bottom forcing the smaller ones u p).

fl small sort might look like'

♦* * * *
4 1111 1111 1111 1111
1 4333 3333 3222 2222
3 444 422 333 333
5 52 44 44 44
2 5 5 5 5
PflSS-1 PflSS-2 PflSS-3 PASS-
♦■Swap was made

First the 4 is compared to the 1.-'si nee they're backwards they're
swapped. The 4 is then compared to the 3 arid again they're swapped.
When the 4 is compared to the 5 no swap is neoicary.- but 5 is greater
than 2.- so they're swapped.

This procedure continues for each pass unti I no swaps ere made and
the sort is then complete. One may to sort 100 numbers between 9 and
100 <e.g. test grades) would be'

100 F=0: FOR 1=0 TO 98 : IF FKI>> hKI + l> THEN H=FK 1 + 1 > ■' fl< I > ACI > =
fl < I +1 >=H •' F= 1

110 NEXT •' IF F THEN 100

fl(0>-fl<99>=Numbers to be sorted
H*Holding variable
F*SwaP made flag
I=GeneraI purpose counter

fln eotuivi lant assernb ly language routine is shown in listing-1. Its
efficiency is increased somewhat by sorting from the bottom u p rather
than from the top down as in the BASIC routine.

In the assembled routine in Listing-1 that is also used in
Listing-2.- the table of numbers to be sorted was set u p to reside in
the firsts and part of the second cassette buffers. Because the
routine itself resides in the upper part of the second cassette
buffer* the tab le may have as many as 255 entries. Naturally the
table may be moved anywhere else in ROM by changing the 5 table
address references.

TABL.-X is the tab le. It's used like A■' I > with the X-register being
used as the pointer instead of I. F- the flag in the BASIC routine.-
is replaced by the V-register. Finally instead of using a holding
variable H one of the items is pushed on the stack and pulled later.

The F'MJF'EiR 1U hummer 1980

0

o

Both routines can be used to sort up to 256 numbers (the BASIC
routine can hand le more if you have the new ROM's). With the machine
language routine., however.. the numbers must be between 0 and 255. It
can be changed to hand le any combination of more.- larger., and/or
negative numbers by using multiple precision techniques., but they are
beyond the score of this discussion.

The BASIC program in listing-2 will sort u p to 255 numbers in both
BASIC arid machine language.- print out the sorted numbers.- the time
for each sort.- and the median.

Depending on the number of items to be sorted.- machine language
can be almost 60,@08 faster than BASIC. For this reason the machine
language routine should be very useful. Feel free to modify and adapt
it to any of your app lications.

I i ii-r3— 1 Rssernb T*=« r-ou~t i ne

STRT LDV #0 Zero swap made fIa.g
LDX #99 Set counter for 1W0 numbers

GO LDA TAEL,X bet one i tern
CMP TAEL-I,X arid compare it to the one before
ECS NOSW If it's not smaller no swap's needed

SWAP PHA otherwise save it on the stack
LDA TAEL-l,X Load the other
STA TAEL,X and switch it
F'LA Retrieve the first one
STA TAEL-I,X and switch it
LDV #-i Set swap made fIas

NOSW DEX D e c r e m e n t c o u n t e r
BNE GO Done all 99 compares
TVA If so check swap flag
BNE STRT If a. swap was made do it again
RTS Otherwise sort is finished

_ i s t i n -=1 izd E Ho 1 1_: Demo F'po^ir-sjn

1 REM SORTING PROGRAM FOR NEW AND OLD PETS EV DOUG HALUZA
2 REM LINES 10-30 SET UP THE MACHINE LANGUAGE PROGRAM. SVS 900 CALLS IT.
3 REM THE NUMBERS ARE STORED IN A<N) AND MEMORY LOCATIONS 634 TO 634+N-l
4 REM THE RANDOM SORT OPTION SETS UP A TABLE OF RANDOM NUMBERS TO BE
5 REM SORTED. THE WORST CASE OPTION GIVES THE MAXIMUM SORT TIME BV SETTIh
6 REM UP A THELE OF NUMEERS IN DESCENDING ORDER (E.G. 100,99,98...2,1).
' 10 DATA160,0,162,99,189,122,2,221,121,2,176,13,72,189,121,2
20 DATA157,122,2,104,157,121,2,160,255,202,208,232,152,208,225,96
30 FORI=900T0931:READN:POKEI,N :NEXT
40 I NF’UT" NUMBER TO SORT "; N : DIMA < N-1 > = POKE903, N-1
43 DEFFNNCN>=N-I:INPUT"SRHRNDOM OR SWBORST CASE SORT";A$
47 I FFt$=" R " THENDEFFNN < N > = I NT (RND (1) * 100+1 >
50 FORI=0TON-1:A=FNN(N):P0KE634+I,A ■A<I>=A■NEXT
60 PRINT"JIFFIES","HHMMSS":TI$="000000":SVS900:PRINTTI,TI$,"MACH LANG"
99 TI$="000000"
100 F=0 : FOR 1=0TON-2 : I FA1'! I) >A <1 + 1) THENH=A< I > : AC I > = A < I +1 > : A< 1 + 1 >=H = F=1
110 NEXT:IFFTHEN100
120 PRINTTI,Tit,"BASIC"
130 PR I NT" BAS IC MED I AN" <A < N/2 > +A <N/2-. 5 > ;• /2
140 PRINT"MACH. MEDIAN"; :I=N/2+633.5:PRINT(PEEKCI + .5>>/2
200 FORI=634T0633+N = PRINTLEFT*<STR$<PEEK(I>> +" ",4 >;:NEXT = PRINT

The F‘FiF‘EIF: 1 1 Summer 1980

Str i ri-=* ± i-i-=-i Vour REIT M Iona

by JoAnn Comito

fill of you are probably familiar with numeric constants <1.2, -3,
1 E 6 n u m e r i c variables (fl, R2, D(2>,...) and numeric functions
(SQR, TflN, flBS,...> in EflSIC. Some of you may not be as familiar with
string constants, variables, and functions in PET BASIC.

What is a string? Anything you type in from the PET keyboard and
enclose between quotes is a string. Letters, numbers, graphic
characters, even cursor controls can be included in strings. <The
exception to this is the otuote itself, since it serves as the string
delimiter.) Here are a few examples of strings1 ■'HELLO'; '1.24"; "
cd cd cd HELLO cd cd cd 123". If you haven't worked with PET strings
before, try typing the last example on your PET preceded by PRINT.
When you enter the string from the keyboard, the 'cursors down" will
appear as Q xs in reverse field. But when the PET actually prints the
string it will move the cursor down three lines, print HELLO, arid go
down three lines before printing the 123.

In the same way that numeric variable names can be used to
represent numbers, string variable names can be used to represent
strings. String variables have the same format as numeric variables,
but are followed by a S. For example' At, R2S, BS(2>. String
variables can be used everywhere string constants are used in a.
program. In LET, IF, PRINT, INPUT, etc. statements. For example:

10 AS="HELLO"
20 INPUT BS
30 C$="SflME"
40 IF fl*=BS THEN PRINT CS
50 IF flSOBS THEN PRINT "NOT "CS

BASIC contains a. number of functions that allow us to manipulate
strings. These functions include LEFTS, RIGHTS, MIBS, and LEN.

LEFTS("HELLO",2) would return the string "HE", the two leftmost
characters of the string "HELLO". This function requires two
arguements, the first is a string, the second a numeric expression.
The arguements of the LEFTS function can also be variables. Try the
following progam:

10 AS="AECBEFGH"
20 FOR I = 1 TO 8
30 BS = LEFTS<AS,I>
40 PRINT BS
50 NEXT I

RIGHTS<"HELLO",2) would return the string "LO". As you probably
guessed RIGHTS does the same thing as LEFTS except starting from the
right. Try the program using RIGHTS instead of LEFTS in line 30.

The NIBS function requires two or three arguements. The first
arguement specifies the string to be examined, the second specifies a.
staerting location along that string, and the third specifies the
number of characters to return. If the third parameter is left out it
returns the rest of the string. For example: MIDS<"HELLO",3,2) would
return the string "LL".

The function LEN simply returns the number of characters in a
speci f i ed stri ng. LEN <"HELLO">=5.

If you wanted to scan a. word, or group of words and find out how

Th,e PAPER IS bummer 1

many times the letter 'E" was used, you would use fl IBS and LEN
functions. Try the following:

5 N=8
10 INPUT BS
20 FOR 1=1 TO LENCBS)
30 IF MIBS<BS,I,1)="E" THEN N=N+1
40 NEXT I
50 PRINT"THERE fiRE"N"E"s IN"BS

The string functions are not only useful for examining and
manipulating strings, but can be used as part of a simple routine to
add cursor control to your programs. The following routine will allow
you to specify two numbers, B and R, for the number of lines down and
spaces over, you wish to position the cursor from the home position,
fit the beginning of your program define the two strings BS and RS as:

10 BS="<h ><25 down >"
20 RS="(40 right)"

1000 REM THIS IS THE SUBROUTINE
1010 PS=LEFTS<BS,B >+LEFTS<RS,R >
1020 PRINT PS;
1030 RETURN

Suppose that you wanted to print something in the fifth row from the
top of the screen, starting in the tenth column. Vou would include
the following statement in your program:

B=5: R=10: GOSUB 1000: PRINT"___

When PET prints PS in line 1020, it does not print any characters on
the screen, but it does home the cursor then print the required
number of down and right cursors. The semicolon after PS in line 1020
keeps the cursor at that position ready to print anything you want.

Mor e t>tr- ± n-ns Htt ached

by Jofinn Comito

The problem I would like to discuss arose in a program designed to
give students practice manipulating algebraic expresions. The
response that the students are to enter is an algebraic expresion in
two variables arid includes three terms. For example: JX+5XV—2V. Since
there are many equivalent correct answers, the problem is getting the
program to recognize all the correct variations. There are two
approaches to this problem.

One approach is to structure the exercise in such a way that the
student has only one correct option for each entry. For example, the
student could be directed to enter the coeeficient of the X term,
followed by the coefficient of the XV term, etc. The program would
only have to check the three coefficients. Whi le this approach eases
the burden on the programmer, it also creates a very artificial
situation for the student. If the student were doing these exercises
with a paper and penci I for the teacher “to correc t, the student would
be required to determine not only the correct coefficients, but the

Thie pfiPER 13 bummer lyyu

correct terms as well. On the other hand, the teacher would have no
difficulty recognizing all the correct variations of the expected
response. The student could write: 5XV+3X-2V; 5XV-2V+3X.: 3X + 5XV -
2V; etc. and they would all be judged correct by the teacher, but
incorrect by the computer.

The second approach involves some work on the part of the
programmer. The goal is to enable the computer to recognize a wide
variety of correct responses. The student is given a minimum of
prompting and must enter not only the coefficients, but the correct
varoables as well. The student is also allowed maximum flexibility
with respect to the format of the response.

Before continuing, it should be made clear- that two strings are
ed.uaI only if they are identical character for character. While 4,
2+2, 2t2, 5-1, etc. would all be recognized as equivalent numeric
expressions, "4"', "'2+2"', etc. would not be considered equivalent
strings. Neither would "HELLO" and "HE LLO" be considered equal
'"spaces count!).

Before be i ng ab Ie to check the student" s resp o nse, all extr aneous
characters wou Id have t o be deleted from it. By extraneous characters
I mean characters that are not needed, but that don't necessarily
make the response incorrect. For example, spaces, multiplication
symbols, parentheses, etc. should all be deleted from the student's
response. The following routine will accomplish that task.

Suppose AS represents the student"'s response.

180 REM DELETES " ","*","<",")"
110 L=LEN(A$) determines length of At)
.120 FOR 1 = 1 TQ L
1 J0 Bt=MIDt(fit,1,1) (examines 1 character of Fit on

each pass through loop)
140 IF B$<>" " AND B$<>"#" AND (if Bt is not extraneous

Bt<:>"(" AND BtO">" THEN 130 then continue with next character>
150 TLt=LEFTt(At,1-1> (TLt stores all characters form the

beginning of At u p to, but not
including the extraneous character)

160 TRt=RIGHTt(At,L-I) (all charcaters from the end of At
u p to, but not including the
extraneous charcater are in TRt)

170 At=TLt+TRt (At is redefined as the
concatenation of TLt and TRt)

180 1=1“1 (all characters after the deleted
character are moved back one
space to the left, counter is
decremented to align it properly)

190 NEXT I

By the time this is completed, all extraneous charcters will have
been deletd from the student's response. The only valid characters
that should be left in At are ■" + ', "X/, 'Yx and some numbers. In
order for At to be a correct response, it should contain an X, V, and
XV term, each multiplied by the correct coefficient. Another routine
is needed to scan At, find the variables and check the coefficients.

While this routine is designed to analyze a specific algebraic
expresion, it can be modified to recognize other expressions as well.
Compensations would have to be made for the number of terms in the
expression and the variables that are to be found in each term.

The routine, with explanations follows. Assume that the

The RARER 1-4 5=? »_J m m ■=* f~ lyyu

t
t

student's response is stored in fit and that all extraneous characters
have been removed. Assume further that the three required
coefficients are stored in an array C, where CC1> stores the correct
value of the X coefficient; C (2) stores the correct V coefficient and
the correct XV coefficient is stored in C(3).

100
110
120

130
140
150
160

170

180
190
200
210
220

230

240

250

255

257
260
270
300
310
320
330
340
350
400
405
410
420
425

430
440

450

460

REM EXPRESSION ANALYZING STR
T=0
IFLEFT* < Fit, 1)=" +" OR LEFT*
(At, 1;. = "-"THEN 140
A$=,,+" + m
H$=H$ + "+"
GOSUB 200
IF T>3 THEN PRINT "WRONG":
RETURN
FOR 1 = 1 TO 3: IF C<IK>0
THEN PRINT"WRONG":RETURN
NEXT I
PRINT"RIGHT":RETURN
FOR 1 = 1 TO LEW. f\$>
Bt=f1IIi$<At, 1,1)
IF C£t=“ + " or B$="-" AND
TF=0 THEN TF=1:XF=0:VF=0:
NEXT I

IF (B$="+" or £$="-">
AND TF=1 THEN GOSUB 400:
GOTO 200
IFB$="X" THEN XF=1
GOSUB300:NEXTI
IF B$="V" THEN VF=2:
GOSUB300:NEXTI
IF (B$>="0" AND B$<="9")
OR Bf="." THEN 260
RETURN
NEXT I
ptr ji ipu

REM"DELETE ROUTINE
TL$=LEFT$(A*,I-l)
TR$=R I GHT t (A$, (LEN C Fit-) -1))
ht=JL t + TRt
1 = 1-1
RETURN
REM CHECK COEFFICIENT
T=T+1
TF=0
S=XF + VF
IF MIDI: (A$,2,1) =B$ THEN
C=1 GOTO440
C=VAL(A$ >
IFC(S)=C THEN C(S>=0

Fit-=R I GHT t (f it, LEN C Fit)-1 +1 >)

RETURN

ING ROUTINE
<T stores the number of terms found)
(checks first character of A$, if

or then OK)
<+ is added to the front of A$)
(+ added to end of A$)
(scann i ng rout i ne)
(makes sure only 3 terms found, else
A$ wrong, return to main program)
(makes sure all 3 terms found and
returns to main program)

(if two tests passed, Al correct)
(start scanning routine)
(store one charcater fo A$ in B$)
(if term flas (TF> is not set to 1
and a or found then start
of term — TF set and Xf lag and
Vf la-3 initialized— continue)
(if TF set to 1 and " + " or found
end of term, check coefficient-
scan fit- from beginning)
(X found, set Xflag to 1, delete X,
continue scan)
(V found, set Vflaa to 1, delete V,
continue scan)
(now character should be 0 to 9 or

if OK get next character.)
(wrong charcater-return to 160.)

(all characters done- return to 160)

(A$ redefined with X and V deleted)
(reaIi gn p o i nter)
(go back to 240 or 250

(increment # terms found by 1)
(term ended— reset TF to 0)
(S sum of X and V flags)
(if 2nd character of A$ is " +" or
then coefficient is 1)
(returns numeric part of At)
(C compared with value stored in
coefficient array if correct, cell
in array set to 0 to indicate use)

(delete leading coefficient)
coefficient)
(go back to 230 to scan new A$)

The PmPER 1 5 1 980

f i s s e m l o ! ■ = • L 3 j- '« £ n j s . - £ i e P i - ~ - d * =■• r - - = « j t i m i

I. Rn Introducti on

by Jarries Few ler

This is a series of articles -for "the programmer who works well
enough in BASIC to get done what needs to be done but who suspects
the PET is capable of something more (and it certainly is).

The 'heart:'' of -the PET is the microprocessor. It is a network of
switches arid conductors so arranged that the switches are set by
electrical signals <the 0"s arid 1 "s in an incoming word) arid these
settings affect the next incoming word. Various kinds of settings
correspond to logical AND', or arithmetic additions and so forth.
The 'vocabu lary" of words that set the processor and the •'grammar'' of
how the words arid the data are combined constitute the MACHINE
LANGUAGE of the microprocessor.

Humans find machine language almost impossible to read and very
difficult to write. Of course.- one mistake can be catastrophic. So
computer engineers make a second language available which is more
human-oriented. This is ASSEMBLV LANGUAGE. It bears a one-to-one
relation with machine language. Many computers are supplied with a
program called an ASSEMBLER that takes assembly language as input and
turns out the equivalent machine language as output. There are
assemb lers available for the PET but they take a. lot of memory. We
will start without one.

Why bother with assembly language at a. 1 I V The PET does a. good
Job with BASIC and even points out many kinds of errors for you. In
assembly language programming you will have to do this all for
yourself. It's a. lot of work.: debugging can be very frustrating," so
why bother ? There are three reasons1 1> Vou can do things in
assemb ly language that you can't do in BASIC. 2> Assemb ly programs
generally use a lot less memory arid space than BASIC does to do the
same thing. 3) Assemb ly progra/fis run much faster. Here are two
examples:

This is a program to draw a. white frame on the screen. The main
part of the program Call except line 30) takes 122 bytes. It takes
a.lmost 1 second (actually 9/10) to run. (The last line is just to
suppress the ready unti I you hit the STOP.>

10 PRINT CHR*C147)-FORI=32768 TO32307
15 FORI=32847TO33727STEP40: POKEI,160
20 FORI=33726 T 033688STEP-1' POKEI,160
25 FOR I =33648TO32808STEP-40 ■' POKE 1, 160 •' NEXT
30 GETX$■IFX*=""THEN55

POKEI,160 NEXT
NEXT
NEXT

Here is another program. Line 15 reads 66 bytes of machine
language into memory. Then the program waits (line 30) for you to
hit SPACE. Then it executes the machine program it put in memory arid
waits for STOP. Vou can run the machine program without the BASIC
program (once it has loaded memory by running at least once) with
command SVS 2560.

10 A=2559 FOR I = 1 TO66
15 REflBX POKE (H+1 > , X • NEXT
20 PRINTCHR*(147>"hit space"
25 GETA* ’ IFA*=""THEN25
30 IFA$=" "THEN SVS2560 •• G0T025

The P H-F' E R 1 fc. bummer 1 yyu

t

•
o

oa

a3

35 I FA*=CHR$ 1 3 THEN END
40 DflTfl169,128,133,2,163 ,9,133,1,170,16 3,16 9 _
50 DflTfl160,145,1,200,192, 40 ,208,249, 136,24,165
60 DflTfl1,105,40,133,1,144 ,2,230,2,169,160,145
70 DflTfl1,232,224,24,208 ,236,145,1,136,16
80 DflTfl251,202,200,56,165 ,1,233,40,133,1,176
90 DATfl2,198,2, 169,160,145 ,1,202,208,238,96

j -f i + doesn"' t run right you probab ly made an ff'ror in one uf tht-
DATA lines. __

The machine program took up- about halt the space '■ t-fc- byte-.;* o+ the
BASIC program <122 bytes). Vet it executed so fast you couldn't time
it. I calculated it took about one thousandth o+' a second to run -
1000 times taster!

How do you ■set started in machine 1 anauaae V Get a. gcod book -
study - practice. I used Caxton Foster/s book ■'Programming a
Microcomputer= 6502' published by Addison-Wesley. It mas one of the
•first on 6502 Assembly Language which is what the PET •'speaks-'. Now
there are many such books - look them over and take the one u'ith the
style you like. When you get serious you will need the reference the
professionals use: "65HX Programming Manual" from MOS Technology.

Next installment1 How to hand le HEX, load and run.

c.'Ed's note •' 6502 Assembly Langauge Programming by Levantha 1 and
published by Osborne is highly recommended, fl similar- book published
by Sybex has many errors and is confusing. Many books are now
available but only the Abacus Software Machine Language Guide directs
itself to the PET. Watch for a review of these books in an upcoming
issue.>

F* c=> k e a. E o r d e r-

by Gerry Eisner

The PET screen contains 40 columns from left to right and 24
from top to bottom. Each space has a number associated with it.

™ this number is 32768; beside it is 32769 -and below it
is Jd’SUo (J2768+40.>. The lower right hand corner is 33767; this is
the l-ast space on the screen. These numbers are really memory
locations and we may change them by using the POKE command. Normally
a blank screen would have a 32 iri each of these locations since 32 is
the FET code for a blank space. To see how this works try;

P0KE32768,1=P0KE32769,2•POKE32808,3

POKE x,y is the command to put the character represented by the
number y in the position given by x. In this case 1 is the code for
fl, d is for B and 3 is for L-. There are 255 possible characters so y
'—an be ff urn y tu ii.-1 •_*. There are 1000 possib le spaces so x ”;an be
trvm .jiii'6c to 33767. To find the code for a character try this-

1> Home the cursor and type the charcter in thw HOME p-.-ition.
Hit RETURN.
Type ;• F E E K 32 1" 6 y a n d hit RETURN. The number you get is the

code for your character. Call this number y.
3> Clear the screen, hit RETURN and type F'0KE32768,y. Vou should
get your character in the HOME position.

The PRPER: 17 Summer 1 980

POKE changes "the contents- of a memory location. PEEK ir-howi- yuu what
is in a memory location. The character codes for the PET are unique
to this machine arid are not standard. To fill the top row you could1

10 FORI=1TO40
20 P0KE32767+I, S3
30 NEXTI

Here we have made a. loop to repeat the PUKE instruction 4ii!U times.
Each time through the loop the location gets bigger by 1. To fill the
bottom row a.long with the top row we could add:

25 P0KE32767+24^40-1,33

This addition places a second POKE location 24 rows from the top. To
add the side borders:

40 FuRJ=:3Lil767+41 TU3ii767+i:4#4y oTEP4y
50 POKEJ,S3 - POKEJ+39,S3
60 NEXTJ

To obtain the left side herder you started at the J2'~'0y location arid
POKEd every 40 spaces which is the purpose of the STEP command. The
second POKE gives the same ini age spaces to the right or at the
r i g h t b o r d e r.

To polish up this program, add a. L'LEAR screen the beginning and a
loop at at the end to prevent the READY message and the scrolling of
the screen.

A further refinement on Puking borders is to nest them with
alternating symbols. For instance, if you want to create a. second
line under the top row in our example, try:

5 E=S3
10 FORN=0TO1
20 FORI=1TO40-2$N
30 POKE32767+41#N+I,E
40 NEXT I
50 E=169-E
60 NEXTN

N sets the number of rows. E alternates between 83 (hearts) and 86
large X.’1. Try other numbers. For example, 160 is a solid block and

32 is the empty space.
P lease note that we have used an I loop working within an N loop.

We Positioned the row of hearts first, then picked up the X symbol,
back to a. new number for N, and finally placed the row of X's. The
POKE starting point changed when the N changed to 1 and the number of
PuKEs was reduced at the same time.

The following is a. routine to accomplish nested borders with n
r o w s o f a 11 e r n at i n g h e an t s an d 1 ar g e X ’ s.

5 PRINT"(clr)".
10 A=32767:E=33727:C=32808:D=83
20 FORN=OTO10
30 FORI=1TO40-2#N:POKEA+41#N+I,E :P0KEB-39#N+I,E NEXTI
40 FORI=c+41*NT0E-39*N STEP 40:POKEI,E :POKEI+39-2SN,E:NEXTI
50 E=169-E
60 NEXTN
70 GOTO70

The PAPER IS Summer 1 S'S©

t

&
t

M o v i Mi— o u r i d - t h e S o i — e e n

by Ra Iph Br ess ler

Many times programs require moving a "'man'' around the screen which
o+ten uses the POKE command. The standard is to use the 2 key for
down, 4 for left arid so on. To use all 9 keys on the number pad you
would have to use 9 IF.. THEN statements to check the input and then
add or subtract from -the present screen location -to move the "'man''.
For example;

270 IF fi=2 THEN VP=VP+40
280 IF 0=4 THEN VP=YP-1
290 IF 0=6 THEN VP=VP+1
308 IF fl=8 THEN VP=VP-40

Of course, you need 4 more statements for the diagonals and one for
' 5 ' which usually stops movement. Now this doesn't move the 'man-', it
only indicates which way he should go. fl is the number from the
keypad which is usually input using the GET statement. VP is your
position on the screen from 3276S to 33767. To actually move the
■'man' you would have to include a line like'

310 POKE VP>87

This will not erase the old •'man' nor will it check to see where the
man is moving. Doug Haluza gave me a routine which does this whole
thing much quicker and it is included in the program below.

10 PRINT"<clr>" CLR
20 FP=33268 VP=FP
30 POKE VP,42 : REM 42 IS *
40 GETfl* IFfl*=""THEN40
50 ft=VRL<fl*>:IF FK0 OR fl>9 THEN 40
60 POKE VP, 32- REM 32 IS BLANK
70 VP=VP+SGN<INT <3* < < <fl-1>/3> - 1NT << fl-1>/3 > >-.9 >> +

40*SGN<INT<0/3—1.1> >
80 IF VPC32768 OR VP>33767 THEN VP=FP
90 POKE VP,42
100 GOTO40

This routine is shorter and really does perform its stated function.
It also provides a challenge! Try to decipher how and why line 70
works.

*
*

PET Tutor LlK«d3.-tes
Lesson 1 calls for information to he PQkEd onto the screen for user

viewing arid manipulation. Un the old RUM PETs the ' ini age of screen
memory' was 4k wide. The new ROM PETs use the upper 2K for memory
expansion. The program uses the section of RAM now assigned to memory
expansion. The cure is to set the address to a lower value used as
screen memory by BOTH machines.

The following changes are necessary-

Line 8285: POKE 36009 becomes POkE 32928
Line t’bt'U: PukE J616fci becomes PukE JoUt'o

The PRPE R 19 Summer-- 1980

No-t I -fs Hnds Or-- Eu~ts

by JoAnn Com i -to

The I f. . . THEN statement is one of the most powerfu 1 statements in
the BASIC language. It enables you to determine i-f certain conditions
have been met or not. It is a decision making statement.* per-forming
certain operations i-f a condition is satisfied.- performing other
operations if the condition is not satisfied. The format of the
IF...THEN statement is as foI lows:

n If Clogical expression3 THEN [BASIC statement]

n = line number
logical expression = discussed in text
BASIC statement = any valid BASIC expression

When an IF...THEN statement is encountered in your program, the
logical expresion is evaluated by the PET. If the expresion is true,
then the BASIC statement following the word THEN is carried out. If
the logical expression is false, then whatever fo 1 lows the THEN is
ignored and the next numbered line of the program is executed.

What kind of BASIC statement can follow the THEN? Any BASIC
statement can follow the THEN' PRINT, LET, GOTO, IF...THEN, ON GOTO,
etc. Some statements such as BATA will be ignored arid others, like
another IF...THEN become unweildy.

What is a logical expression arid how do you know if it is true or
-false? The second part of the -question helps to answer the first
part. A logical expression is an expression whose truth or falsity
can be determined. The expression 4+2 is true to the PET, but it is
not really a logical expression, on the other hand, we can determine
the truth or falsity of the expression 4+2=7. In this case we have a
logical expression whose value is false. Generally, in a simple
logical expression, two items are compared and a statement is made
relating them. The relation between the items can be expressed in
different ways. They might be the same <=), they might be different
<<>>, the first might be larger than the second <>>, or the other way
■around <<>. The following are examples of simple logical expressions ■'
A+2<=7; A=B; B*<>HHELLO", A>4. They are all logical expressions,
because in each case, assuming we know the value of the variables, we
can determine whether or not the expression is true. They are simple
logical expresions, because each statement contains only one
comparison.

We must also consider compound logical expressions. These are
composed of two or more simple logical expressions connected by AND's
and/or OR"s. /For example 2+4=6 AND 3<5; C-A+B OR B#="PET" AND S<=E;
<A=1 OR A=2> AND <B=3 OR C=17>.

While the truth or falsity of simple logical expresions is easily
determined, how can we determine the truth value of compound logical
expressions? The method is similar to that for evaluating arithmetic
expressions. If you were to evaluate the following: 2*3+£ 1+4*5>, you
would not attempt to do it all in one shot. Vou would group the
numbers so that you evaluated one operation at a time according to
the ''order of operations rules first parentheses, then
mu It i p Iicat i on, then add i t i on. For examp le

The- PhPER summer 1 y:-:y

m
m

m
m

m

* 2 * 3 + <1 + 4 * 5>

6 + <1 + 20)

6 + 21

27

When evalua-tins compound logical expressions, f irst deter-rnine the
truth value <truth or -falsity} of' each simple expression. Then think
of OR as addition arid AND as multiplication. In other words, first
you evaluate expressions in parrntheses, then AND's, then OR"s. Here
are the x addition' and ■'multiplication-' tab les for OR and AND < where
T stands for true arid F stands for false}.

T OR T = T
T OR F = T OR
F OR T = T TABLE
F OR F = F

T AND T
T AND F
F AND T
F AND F

T
F AND
F TABLE
F

If either one or both of the simple expressions in an OR statement
are true, then the compound expression is true. The compound
expression is false only when both simple expressions are false. AN
AND statement is true only when both of the simple expressions are
true. If either or- both of the simple expressions is false, then the
compound expression is false.

Let's evaluate the following expression ■'

4 + 6 = 2 AND 5 + 7 < 16 OR <2 > 3 OR 4 > 1 AND 5 < 6}

AND F OR < F OR T AND T }

F OR < F OR T }

F OR

T

T

*

therefore the expression is true.
Of course you do not have to evaluate the logical expression when

you use in IF...THEN statements in your program. PET will do all the
evaluating. However, you must know how to evaluate these expessions
so that you can be sure PET decides things the way you want them
decided. If we take the same expression as above arid add a pair of
parentheses, we get a different result-'

4 + 6 == 2 AND <5 + 7 < 10 OR <2 3 OR 4 > 1 AND 5 <C 6} }

F AND < F OR ■C F OR T AND T }}

F AND < F OR < F OR T ■> >

F AND < F OR T }

F AND

F

T

The- PRF'ER 21 bummer 1380

•therefore, "the expresion is -false. Vou must be sure to include
parentheses where they are needed in order to express what you mean.,
otherwise you will have surprising resuIts.

When would you use compound logical expressions in an IF...THEN
statement? Here ar e a c o u p le of examp les

1) Vou want to be sure the user input an integer.. L between 1 and

160 IF IOINT<I> OR ICl OR I>10 THEN PRINT "TRV AGAIN"
BETWEEN 1 AND 10"

2} Vou are looking -for animals.. A$, for your zoo. Vou will take a
panda o-f either sex.- S$, but you are only interested in a lion
i-f it is a -female.
200 IF A*="PANDA" OR A*="LION" AND S$="FEMALE" THEN PRINT"OK"

The last component o-f the logical expression to discuss is NOT.
NOT simply reverses the truth value o-f the expression immediately
-following it. NOT 4 + 2 = 7 is true. NOT 4+2=6 is -false. NOT <4+2=6 AND
3<=4} is false. NOT <4+2=7 AND 304} is true.

Vou‘must be careful when an IF...THEN statement is the first
statement in a multiple line statement line. If the logical
expression is false, then the program continues on the next numbered
line. The later statements in the line may never be executed. For
examp le

10 IF A=3 THEN 100 PRINT"A DOES HOT EQUAL THREE"
20 PRINT"THIS IS LINE TWENTV"

If A does eotual three, then the program will continue at line 100. If
A does not ectual three, then the program will continue at line 20. In
either case the second part of line 10 is never encountered.

And now, for something completely different. This routine will
move a ball around the screen using the number pad. It avoids the
'snow' you get when using POKEs arid you need only determine if an
even or odd number- was typed < line 130}. If you are only using 2, 4,
6, and 8 then you can omit line 130 and 0$.

M O V E f=t JESFill_I__

5 PR I NT " rimcM'M’McMeUi»»»»»»»»»»•11,
1 0 E $ = " i [' i a » i n "
100 G E T A $ T F f l * = " " O R f l * < " l " OR A$>"9" THEN 100
110 PRINT"II " ,
120 A=VAL <fl$}
130 IF INT<A/2}OA/2 THEN PRINT MID# <0*,<3*H-1}/2,3}; GOTO150
140 PRINT MID#(E#, < A-1 } , 2}
150 P R I N T " # " ,
160 GOTO100

The F'MF'EIR! Summer 1 yyy

IE: Fi s I C JD •—> s I -t Be-+:-te-1—

by Ra. Iph Br-ess ler-

#
fiboirt a. year- aao the 1 b.'32'K PETs beaari their- trek across the

country. These rrie.chine.-s oontained a slightly altered Microsoft BASIC.'
a new character generator -arid who les a la changes in the page 0, ra.ge
i .■ and page k' memory locations* Noui the retrofit ROMs are avai lab le
for the old SKs and a. 11 new PETs wi 11 have the new ROMs. The new ROMs
take care of some serious mistakes in the old ones arid are worth
having. However.* many of us have good programs which ran we 1 1 on the
old machines but will not on the new. Certainly.* anything written in
machine la.ngi_-fa.ge wi 1 1 have to be almost completely overhauled*
Programs written in straight BASIC will need no changes except for
the reversal of upper and lower case. Software that uses POKE
statements may have to be revised.

The point of this article is that.* -as much as possible.* software
should use only standard BAblL- and avoid refering to memory locations
w h i ch rna.y chan g e wh e n e ver the rn anuf acturer I i kes. The foilow i ng
examp les sho*.u how you can use BhSIC to do some of the work t h at PoKEs
do. For those of you just starting these techniques should also be of
interest.

POSITIONING A POINT ON THE SCREEN

The following lines can be used to position a point 10 lines down and
.-•*H SPSOSS »

Old ROMs: 100 POKE 245,9 : PRINT : POKE 226,10 : PRINT"*"

New ROMs: 100 POKE 216,9 ■' PRINT - POKE 19*3,10 •’ PRINT"*"

BASIC 5 BD$= " < home > < 25 down > "
100 PRINT LEFT*<DD$, 10> - PRINT TABCIO)

'"Note ■' Anything in parentheses is not to be typed as shown. For
example, (.home.) means hit the HuME key once.

CLEARING THE KEVBOARB BUFFER

b'ood programs make the user hit as few keys as possible to get the
desired resu It. This means that yes/no questions or those that
re etui re only a one character response should use GET statements. For
examp le,

5 PRINT"Do you want instructions"
15 IFH$="V" THEN GOSUB 1000 S INSTRUCTIONS
1 0 GET A# : I FA?-- " " THEN .19
k'U REM Long set of calculations
30 PRINT"Another run"
90 GETB* • I FB-t:= " " THEN90
100 IFB*="V" THEN 20

In this case the computer does a. long set of calculations and then
•asks if the-* user wants to do it again. If the user is impatient and
presses a. key when the computer is calculating, the GET statement in
line yw wi11 use that character. This means the program may end or
perform some other undesired result. For naive users it is best to

The PAPER :—* i_4 m rn «=■ r

l.LEhR "the1 KEVBuARD BUFFER b^for-e e-sch input. The program wou Id "then
look like this.

5 PRIHT" Do y o•_j w ant i nstruct i ons ‘1
1 0 GETftf I Fh # = " " THEN 1 0
.15 IFA*="V" THEN GOSUB 1000 @ INSTRUCTIONS
kiU REM Long set of calculations
b'fci REM L- leer- the buf+"er here
S5 PRINT "Another, run”
90 GETBS : IF B t - - " " THEN.90
100 IFEf="V"THEN20

Now for line yy in the lest oese we may us e ■

Old ROMs: SO POKE525..0

New ROMs : POKE 153, 0

BASIC ' 80 FOR I = 1T 09 : GETA$ ■' NEXT

STOP KEV DISABLE

Again, a. naive user can find any number- of ways to destroy your
programs. They may, through no fault of their own, press the stop key
arid break the program. Not knowing that a. simple CO NT wi 11 get them
back where they were, they often w-alk away. In most eduo-ationa 1 arid
demonstration programs making the b'TuF' key inoperative makes good
sense. Unfortunate ly, there is no standard BAblL' way to do this. We
must therefore use two different F'URE locations or make our program
smart so that it knows what machine it is running on. fi smart program
ini i i need on ly one statement to disa-b le the stop key.

Old ROMs: POKE 537,136 ■ REM disables Stop
POKE 537,133 ■ REM Enables Stop

New ROMs' POKE144,46 ' REM Disables Stop
POKE 144, 43 REM Enables Stop

SMART:

On the old ROMs PEEKing at BASIC resu Its in a. value of 0 since
BASIC was protected. With the new ROMs a PEEK''.’50003} wi 11 return a 1.
Len Lindsay first publicized this technique in the July 1979 issue of
Microcomputing arid we are indebted to him for the idea. For a
cofiiP lete exP lari-ation arid other examp les see that artio le.

Notice in the above examp le tha.t the F’UKE locations between o Id
and new differ by 393 and the values for disable arid enable are 3
different in each case. Therefore a. a. short program like the
fo 1 lowing wi 1 1 work for both sets of RUMs»

1 PT=PEEK(5O003> : PL=537-PT*393 ■' POKE PL, PEEK<PL>+3

Since PT (PET type) wi 11 be 0 on the old ROMs, F‘L wi 11 be 5b7. Un the
new ROMs F'T wi 11 be 1 and F'L wi 1 1 be 144. We F'URE into these
locations whatever was there, PEEK < F'L..', plus 3. To enable this key
simply POKE F'L, PEEK<PL>-3. Caution must be used here since these
statements can obviously hang u p the F'ET.

"The PhPE R: ’̂4 bijmmer 1 yyu

I
I

1
i

#

#

The scrs'G'n memory looa.ti ons for the o Id and new F'UMs the sa.me.
These locations run - f r o n t S'k'768, the home position.' to 3 3767 ton the
lower right hand corner. This means that pr-oarants that PEEK or PukE
screen memory show Id be i_jk on both F'LTs« The advantage of using these
POKEs is that they are faster than the equivalent PRINT statements.
The following program wi 11 print a screen border on both machines.

SCREEN MEMDRV

10 ? " c lear>"
20 FOR I =32768 TO 32768+39
30 POKE I, 102 ■ NEXT
40 FOR I = 32808 TO 33728 ST.
50 POKE I, 102 • POKE 1+39, 10,
60 NEXT
70 FOR I = 33767— 9 T U 3 3 767
80 POKE I, 102 • NEXT
90 GOT 0 90

UP PER,-'LOWER CASE

There is one difference between the old and new RuMs that can
cause problems and cannot be helped. When the CBM engineers changed
the BflylL" RuMs.. they also changed the character generator ROM. This
chip is the one in the far- right hand corner of the main F'L- logic
boar-d. Its operation was significan11 y changed in the new PET
v ers i ons ■ The tab le be low shows the changes that *.uere made.

POKE 59468,X Old ROM New ROM

X= 12 : unsh i f ted

sh i fted

X = 14 : u n s h i f t e d

upper case

graphi cs

upper case

lower c-

graphic:

lower c-

shifted lower case upper case

Hs you can see when X—14 the upper- and lower- cases of the F'ET ar-e
reversed. What is even worse the HoL-I I codes for- letters ar-e a.Iso
modified. In this mode on the old RuMs, Ryu11 65 to 9u represents the
upper case alphabet. In the new ROMs these numbers correspond to the
lower case alphabet ! The conclusion is that programs that MUST have
extensive lower case wi 11 look funny on the opposite F'ET.

There are other useful F'U.KES and techniques that might be
discussed in a follow up article. Let us know what you prefer to see.
What kind of information do you need ?

F" loPK-y Fa.i lur es
Us if i*i unioiue disk IDs with the L-ommodore £040 Dual Drive is a good

idea for many reasons. In some cases.- using unioiue IDs is more than
Just useful. When using two disks in the dual drive problems may occur
if both IDs are the same. If the IDs are the same then only one Block
fivai labi lity Maj* is written and data may be lost. In fact, both disks
may end u p with the same name and the same number of blocks free, fl
disk with only 100 blocks used could show only 200 or so tree. The
solution to this problem may be using the VALIDATE command. Better
yet, use unique IDs.

The PAPER Summer- 1 yyo

T r o u b le- — sho«3-t i n a y o u r - P E T

by Doug Haluza

What do you do when you turn on your PET arid its dead b lank screen
just stares back at you? There are some basic troubleshooting
techni<*ues you can use before you have to return it for service.- if
it's not still under warantee.

Naturally you shouldn't start digging into your PET before you've
read this article at least once., arid are sure that you understand the
procedure. If you've never fixed anything before., or if you're not
mechanically inclined you shouldn't start practicing on an #800
computer. Let someone else with experience do it,, or return it to
your dealer.

First be sure that it's Plugged into a working outlet arid has a
good fuse. Vou can skip this step if you can hear the high pitched
'whine' the video monitor gives off., or if you can see the reddish
glow from the CRT tube through the back of the monitor housing.

Turn the PET off and then duiokly back on. If the monitor is
working you should see a random pattern on the screen. If you don't.,
check the video connector after opening the PET; it's the one with 3
pairs of twisted wires comming out of it. It must make good contact.
If this doesn't work give u p . The problem is probab ly in the monitor.,
and there are always dangerous high voltages present there.

Unplug the PET before opening the case. Remove four screws from
under the 'lip' of the PET (note' the newest PET's with molded cases
only have two screws arid a support stand in the front of the lower-
half of the case). CflREFULLV lift the white part of the case u p tit's
hinged in the rear). Watch for short wires., especially the casette
cord on older 8K machines. Remove connectors if necessary noting how
to reconnect them later. Take the support stand from the left half of
the lower case and place it in one of the screw holes. This will hold
the case open much like the hood on a. foreign car.

If the CRT was on., but the PET still didn't respond., then check
that all the IC 'chips' mounted in sockets are secure ly in place. Tar-
each one firmly., but don't break the PC board. Make sure you get all
23 in front; arid the seven in back (new PETs only have nine., located
in the rear). filso check that all four connectors are on securely.
Check the power supply connector on old PET's for burns., especially
if yor PET 'carshes' when you jar it. It's the connector with two
brown^ two red., and a black wire corning out of it— more on this
later.

Close the lid.. Plug it in and try again. Vour PET is probab ly
cured. If not try again carefully rocking each chip in its socket.
Don't try to lift it out because you'll probab ly bend the pins.
Remember you're only trying to insure that they're making good
contact with the socket.

fls a last resort you can try swapping the scratch pad RAM's with
the high RAM's. If they're bad the PET won't come u p . Use the
procedure described later in this article., but remember this is a.
long shot.; the problem is probab ly in the ROM's.

If the power supply connector was burned it must be c leaned or
rep laced. To o lean it remove the connector noting which way it was
on. Now remove the small metal contact inside the burned section of
the connector by pulling on that wire while pressing the small
locking tab in back with a screwdriver. After it's out., c lean the
contact surface with fine emor-y paper and bend it out a. little so it
makes firmer contact.• then put it back in the connector. Clean the
lower half of the connector by lightly scraping each pin. Remove all

The PhfF'ER summer 1 yyu

t
t

t
t

filings "to prevent shorts and lightly 'tin' each pin with so lder if
you can. Now put the top half of the connector on backwards. This way
it'll make contact with the other side of the pins which should still
be good.

If the problem persists lift the main logic board using the
prooedure described later. Check the so lder joints for the power
s u p p ly connector on the bottom of the PC board. The heat from the
connector may have melted the so lder and caused a bad connection.
Reso lder it if necessary.

If you were experimenting with the user port and are now having
trouble with the casette decks., the user port.- changing character
sets j and/or the IEEE port., you may have blown the 6522 VIA chip. If
you know how to remove and insert IC's try switching it with a 6522
from a working PET. Be careful to keep the chip away from static
electricity sources like styrofoam. If this was the problem see your
dealer about getting a new 6522 chip. It shouldn't cost more than
$15.

If some of the characters on the screen flash or do other strange
things the problem is probably in the screen RftM. New PETs have them
soldered in place., so you'll have to return the board. On old PET's
triple check the two IC's at board locations C3 and C4. Look down the
edge of the PC board to find the letters and numbers just like you
would on a map. If you're sure they're making good contact then
switch them one at a time with the top set of program RAM's. Use the
procedure be low.

If your old PET shows less than 7167 bytes free., you probab ly have
a bad RAM chip. Look u p and triple check the two suspect RAM's in the
table below for good contact. Turn it on again,, and if it's still out
swap them with the upper RAM's.

FREE MEMORV 2114 6550

7167 to 6144 JI-1 JI-8
6143 to 5120 JI -2 JI-7
5119 to 4096 JI-3 JI-6
4095 to 3072 JI-4 JI-5
3071 to 204S JI-5 JI-4
2047 to 1024 JI-6 JI-3
1023 to 0 JI-7 J1-2
Scratch Pad JI-8 JI-7
<Screen RAM) C-34 C-34

This table shows the locations of the pair of suspect RAM's. Check
the markings to see if they're type 6550 <24 p ins> or 2114 <13 P i n s) .
RAM's marked TMS-4045 are the same as 2114's. Swap the suspect RAM's
one at a time with the upper RAM's <7167 to 6144). CarefuIly lift the
chip out of its socket by slowly prying it up on both sides. Be very
careful not to bend the pins. When inserting the chips back in the
sockets make sure the small key or dot faces the same way as the
others for proper orientation. After you've swapped one., close the
PET arid turn it on. If the number of free bytes is larger., but not
7167; then that RAM is bad; mark it with red nail polish so you can
replace it later. If the number is smaller., check the chips for
proper alignment. If the number is the same., then swap the other one.
If you were swapping the screen RAM the glitches will disappear arid
free memory will come down when you've found the bad one.

This procedure will give you the maximum amount of memory until
you can replace the deffective RAM. If you get different numbers of

The RmREEIR Summer- 1 y y U

■free bytes when you turn on the maohinej remove "the bad RAM
a 1-together; the intermittent chip may cause program errors.

Vou should be able to obtain either type of RAM chip from your
dealer for under #15. The 2114 RAMs.■ however.- are available from
Radio Shack for #11. Ask for catalog no. '̂76—2504.

If your Problem wasn't mentioned.- or still isn't cured you may
only have to return the main logic board for service. If the monitor
works alright., the cassette deck is OK.- arid the black aluminum heat
sinks get warm after the PET has been on for a. whi le.- then the
x>roblem is on the main logic board. Vou can remove it to return it to
your dealer for repair or replacement by removing the 3 screws that
hold it down arid carefully lifting it off the 3 Plastic locking tabs
after removing all four connectors on the board along with any
external connectors you may have added. Naturally you should check
with your dealer before removing the board.

T i m e - F ’ - s c s s r e s U l j i c l < I ■=•

by Ralph Bress ler

There are many reasons why you might want to measure time while
using your PET. Sometimes you want to wait some time between two
a vents such as the end of the instruction for a program arid the
behsiinning of its execution. In some programs you might want to know
how long the user took to do something or limit the time for a
certain problem. At times it is important to time the execution of
statements in a program. Other steps in a program must be delayed to
allow for human recognition arid repsonse times.

The 6522 PI A device has several differ net clocks., some of which
are assigned to reserved variables arid others which may be accessed
by using PEEK. Perhaps the easiest way to create a delay in aprogram
is to use a. simple time wasting FOR... NEXT loop. This is not exact
and cannot be used to time events. An examp le;

100 PRINT"READ THIS QUICKLV SINCE IT WILL DISAPPEAR!"
200 FOR XX = 1 TO 2400 : NEXT
300 PRINT" < c lr>I TIOLD VOU TO READ FAST!"

This program will print the first line., wait about 3 seconds., c lear
the screen arid print the second line. By changing the upper limit of
the loop you can control the delay. Each 400 iterations of the loop
account for about .5 seconds.

On the PET the variable TI# is resrved to measure time in hours.,
minutes and seconds. This value is stored as a. string and represents
time in the 24 hour system. The form is HHMMSS and to set the clock
for 9 26 AM you might-type the following directly on your screen.

TI#="092600"

If you set the clock when you turn the PET on., then you will be able
to find the correct time by typing ?TI# at any time. If you don't set
the time then the string returned will represent the time since the
PET has been turned on. To time the execution of a program you cou Id;

10 TI#="000000"

300 ET#=TI# PRINT ET#

The PRF’ER 28 S-urrirrier- 1 y yt1

t
t

This would give the e lapsed time between statements 1© arid 300 in the
form above. Remember that this string may hand led as any other. For
exam»»le: LEFT#(TI#.. 2) would return the number of hours between
statements or since the PET has been turned on.

To time shorter intervals the variable TI may be used. This clock
measures time in •'Jiffies-' which are 1/60 th of a second. TI cannot
be set direvet ly but is affected by setting TI#. To time the above
program in jiffies you might do the following'

10 TI#="000000"

300 ET=TI PRINT ET

If PET prints 300 it means 300 jiffies or 5 seconds have e lapsed
between statements 10 arid 300.

Both of these programs reset TI# to zero and so interfere with the
use of TI# for keeping the time of day. To avoid doing this you can'

10 BT=TI
■

■

300 ET=TI-BT PRINT ET

By doing this we record the time before and the time after the
statements and subtract to get the elapsed time. This is a most
common application of timing short time intervals. This method has a
drawback related to the fact that if midnight strikes before the
timing is done TI becomes 0 and the ET will be negative. To avoid
this., add the following statement to your program;

310 IF ETC© THEN ET=ET+24*60W3

This adds 24 hours worth of Jiffies to the negative number to get the
true elapsed time in Jiffies.

In common useage these ar-e the only clocks needed. Vou might want
to be awar e that other clocks are availab le.

PEEK <59465) counts in units of 256 microseconds
PEEK <59464) counts in units of 1 microsecond
PEEK <512): Old ROM counts in units of 13 minutes.-
PEEK <141): New ROM counts 0 to 80 in 24 hrs.
PEEK <513): 0 Id ROM counts in units of 4 secs.- counts
PEEK <142) •’ New ROM 0 to 255 in 18 minutes., increments

every 256 Jiffies
PEEK <514) •• Old ROM increments every Jiffy., counts 1
PEEK <143): Hew ROM to 255 in 4 seconds

One interesting application is to use the WAIT command. For examp le
for the Old PETs WAIT 513.9 will wait a while arid experimenting with
the last number will increase or decrease the wait time. This command
can be used with any of the locations above.

N h -=>."£ M aJ--:; e s •=*. U o o c4
E«:JuG-3.‘t i on a 1 Coniiou*ter- Pr ô rsjin

by Joflnn Comito

There are three key words in the title of this article1
deucat i one. I.. computer ■ and proaram. In order to answer the question
posed in the title.- the word 'aood"' must be associated with each of
the three key words. In other words.- a. piece of software is a good
educat i ona I computer pr oar am if 1 > i t is "' aoodeducat i ona I ly .■ 2 > it
is 'aood'' to present the lesson on the computer.- 3> it is a aood
proaram.

The lesson presented must be pedaaoaically sound. fls educators you
have been makina this type of evaluation repeatedly; when lookina at
text books.- f i Imstrips.- preparina your own lessons.* etc. fl lesson
presented on a computer shou Id meet the same standards as a. lesson
presented via any other medium. The facts presented must be accurate.
The concepts developed and/or reinforced must be clear- and correct.
Correct student responses should be rewarded with more spectacular
results than wrona answers. To many proarams use the reverse
principle which actually encouraaes students to respond with
incorrect answers. Vou are in the best position to evaluate the
soundness of a. lesson in your subject area accordina to your
educational phi ldsophy. If the computer proaram does not meet your
standards.- then it is not a aood educational computer proaram.

The second key word in the ctuestion is 'computer'', fl computer is
not a. textbook.- nor is it a. f i lmstrip projector or a tape recorder.
It should not be used to imitate any of these items. It is a. waste of
time and effort to take a aood lesson from a textbook and transform
its o that the words appear on a. TV screen instead of paper. The
computer should be used to present lessons in ways that they cannot
be Presented in a textbook. The proaram sou Id take full advantaae of
the computer's cap abi li ties: text and araphics displays.- animation.*
sound.- fast computation., and stora.ae of larae amounts of data. If an
otherwise important concept is alossed over because the computations
involved are too complex and numerous.- then use the computer. If it
is impractical to aet hands-on experience.- say runnina a. nuclear
reactor., use a computer simulation. If drill and practice lessons are
borina to students.- use the computer 's araphics.- sound and aamina
capabilities to make these necessary drills more appealina. If the
best way to present a. topic is by elaborate animation., perhaps under-
student control., combined with immediate feedback is more
appropriate., then use a computer. If the computer can enhance a
lesson then use it. If you only use it to imitate other media, already
at your disposal., then you're wastina your time and probab ly money.

The last of the key wors is "’proaram'’. In some ways aood
proarammina can be the most important of the three criteria.- on the
other hand it can be the easiest to correct if it is lackina. Once a
lesson has been developed that will be presented on the computer-.* the
equations worked out.- the se-iuenoe of imaaes determined., the type of
animation decided upon.- etc. iyt must be turned into a. workina
proaram. Without this step there will be nothina for the student to
see after turnina on the computer. Uf course.- the lesson
specifications can be turned over to a proarammer for codina. still*
it is not enouah to have a workina proaram. fl potentially excellent
lesson can be ruined by poor proarammina practices. These proarammina
Pitfalls are in four- areas.- presentation of materials on the screen.*
processina student responses., inefficient proarammina and proaram

The PAPER »_-i m m e t

i
I

1

maintej-'iance. The -first three problem areas are apparent when the
prosrairi is running., tf'ie last when an attempt is made to modify the
proaram. Again I would like to stress that while poor proarammina cari
seem to ruin a aood lesson.' the proarammina can be corrected by
another proarammer if need be.' but no -amount of proarammina can
ss.lva.ae a lesson that does not meet the first two criteria.

borne of the problems in the presentation of materials.' or screen
management are: not clearina the screen at the beainnina of the
proaram.. allow ina material to scroll off the top screen., foraettina
to switch from lower esse to graphics or vice versa..' or foraettina to
turn off the reverse field mode. Whi le these prob lems are easy to
correct,, uncorrected they make a messy presentation.

Another proarammina problem concerns the way in which student
responses are handled. The proarammer must anticipate the types of
answers the student will provide. The proaram must be able to hadle
all these possible responses. Unce traps have been set up for
anticipated replies., another trap must be devised to hand le the
unexpected responses. If the proaram is expectina an intearal input*
be sure to check that the input is an inteaer. If you use the input
as a. divisor., be sure that it is not zero. Use an input routine that
will not allow the student to fall out of the proaram if RETURN is
pressed with no other input. After determinina the type of
inappropriate response the student has used* print a. message
explainina the response needed* don't leave the student guessing.

Inefficient proarammina may or may not be a problem* depending on
how inefficient it is. There are two ways it can be inefficient:
interms of speed of execution* or interms of.memory used. If the
proaram is short to begin with* then it does not matter if it wastes
memory. On the other hand if the proaram threatens to exceed 7K* ways
must be found to cut any waste of' memory. Problems concerning
execution speed are relatively rare* but if the proarammina is so
inefficient that the student must wait for responses from the
computer* then the inefficiencies must be removed. If there are so
many calculations that Iona response times are unavoidable* then a
message should be printed on the screen to that effect. It is much
more comforting for the student to know that the computer is working
arid will return with a response* than to wonder if the system has

Problems of proaram maintenance will not be apparent to your
students* but will be to you if you try to revise your programs.
These problems deal with the structure of the proaram* use of REM
statements* efficient use of subroutines* etc.

Good proarammina techniques can be learned. Development of aood
educational software depends upon your imaaination and creativity.
The microcomputer can be a. very valuable classroom asset* use it to
i ts fu 11 potenti aI.

So you've come u p with a terrific idea, for an educational program*
it is sound pedaaoaically and it will make aood use of the computer's
special powers. Vou also have an alaorithm that will aet the
computer to carry out your idea. How do you turn your idea and
alaorithm into a aood proaram '? There are several factors that will
make a run of the mill proaram into a. aood proaram. The first factor

T h e 1 P h P E R - z ' 1 -=> «_-i r n m «=■ r — 1 3 3 t

crashed.

W r i t i n -=_i T h i -S.'t Lj *_■ ■_»d
duca.'t x on a 1 Pr o ar-arn

by JoAnn Comito

I will discuss is program organization.
Many beainnina programmers are overwhelmed* or even frightened by

the thought of having to write a whole proaram. There are PEEKs and
POKEs* all kinds of variables* nested loops* cursor controls* and
many other detaiIs to worry about. Once the proaram is written there
may be problems debugging it or tryina to modify it. There may be
numerous GOTO statements transferina control to different parts of
the proaram so you can no lonaer follow its logic. If you haven't
worked on the proaram recently* you may find it very hard to remember
what you did and why. The solution to these problems can be found in
"structured pr oar arum i na"' and 'top-down design".

When usina the "top-down" approach to proarammina* the large
number of details that seem overwhelmina are ignored until the very
end. fin example would be relocating from your present place of
residence. Vou wouldn't worry about the color of the switchPlates in
the bedroom first. Vou would make the much broader* fundamentaI
decisions first. Vou miaht decide on the country* the assuming you
chose the IJSfi* you would next select the state* an area, and perhaps a
specific school district. These first* top level decisions are
relatively simple to make and many of them may be decided by external
circumstances — job location* for instance. The next level of
decisions miaht involve choosing a price ranae for the house; a
buildina and the number of rooms. It is not until after the simple*
broad decisions have been made that you start worrying about
decorating individual rooms. Even when you reach this "room level"
of decision making* you would not start with the color of the
switchPlates. Vou would start with a more basic decision* such as
deciding between early american and french provincial. Design your
proaram from the top down. Decide on the a major sections of the
proaram* but don ' t worry about the detaiIs unti I later.

How do you decide what sections are needed ? Think of the proaram
as a series of tasks that the computer must perform. Some of these
tasks miaht include positioning the cursor.: getting student input;
printing corrective messages; displaying the aameboard; etc. How
should these various sections be arranged ? Structured proarammina
provides the answer here. The idea behind structured proarammina is
to have a. relatively short main proaram followed by a series of
subroutines. Each subroutine performs one specific task. The main
proaram acts as the conductor of a symphony orchestra*' as a traffic
controller; a general directing an invasion. Once the proaram has
been orchestrated* the main program simply calls the subroutines as
they are needed. The main proaram will look like an ordered list of
tasks to be performed. There are not a lot of GOTO statements sendina
control all over the place. Control is switched to the subroutine*
but as soon as the task is performed* control returns to the next
statement in the main proaram.

Since each subroutine performs only one task* the subroutines are
relatively independent of each other. Not all the rouitnes have to
be developed for the proaram to begin running, fit a very early stage
of development the proaram miaht look like this:

80 REM MAIN PROGRAM
90 N=1
100 GOSUB 2000 @ PRINT DIRECTIONS
110 GOSUB 1000 @ POSITION CURSOR
120 GOSUB 3000 @ GET INPUT
130 GOSUB 1000 6 POSITION CURSOR
140 ON N GOSUB 4000*5000 § PRINT K/0 IN BOX

The PAPER 32 Summer 1

159 GOSUB 6000 @ CHECK FOR WIN
160 IF H=1 THEN H=2’ GOTO 110
170 n=1 •'GOTOl 10
200 END
210 :
1000 REM CURSOR POSITIONING
1010 PRINT"CURSOR POSITION"
1020 RETURN
2000 REM DIRECTIONS
2010 PRINT "HOW TO PLfiV."
2020 RETURN
3000 REM INPUT ROUTINE
3010 PRINT "GET INPUT"
3020 RETURN
4000 REM PRINT X IN BOX
4010 PRINT "X"
4020 RETURN
5000 REM PRINT 0 IN BOX
5010 PRINT "O"
5020 RETURN
6000 REM CHECK FOR WIN
6010 PRINT "CHECK FOR WIN."
6O20 IF WIN=1 THEN GOSUB7000 & FIREWORKS .
6030 RETURN
7000 REM PRINT FIREWORKS
7010 PRINT "FIREWORKS"
7020 END

Even though none o-f the subroutines have been developed., the program
can be run. Vou can check the flow of the program. Vou can make
sure that the program actually sets to all of the subroutines at the
right time. Now you can start working on each individual subroutine,
fls each subroutine is developed it will replace the PRINT statement
that merely tells you that you reached the subroutine. Vou can write
and debug each subroutine individually arid place it into the
structure of the program. Developing your program in this manner has
several advantages. The detaiIs are left for the end and having each
task of the program in a separate.■ labeled section simplifies
debugging and independent subroutines can be used in different
programs. There are severa.I different methods of adding subroutines
to main programs. The easiest method is using the Basic Programmer's
Tool Kit. If you lack the Tool Kit see the article in this issue
about mergi ng progr ams.

Another important step in program development is the use of REM or
remark statements to document your program within the Program itself.
These REMs are crutial if you do not intend to develop the program in
one sitting. Without them you may not be able to tell what you were
doing last time. Since these statements take u p memory you may have
to remove them as the program gets bigger. Still it is better to
include them in the beginning.

Using the suggestions given here will make the development of
those good educational programs much easier. The easier it is to
program the more programs you can write.

The PH PER bummer 1 yyu

f i c r e r t x v e : u s e : f o r c o m p u t e r m o d e l s

by James A. Fowler

For -the last year- I have used my PET -to do basic research in
deve lopmenta I biology. Models o-f bi logical systems have been run on
computers -for many years. The usual purpose has been to test the
effect of various assumptions and to get results to be compared with
reality. Another and a rather difficult approach is to use computer
models as a youngster uses some toys - to sharpen skills and to gain
art insight into re lationships embodied in the toy.-'mode I. For
example.- a toy crane will tip over if the boom is down and the load
is heavy. Playing with a toy crane will give a 'feel'’ for the
re lationship •' the more vertical the boom., the heavier the load can be
without tipping over the crane. The mathematical analysis of this
relationship is not difficult but the chi Id need know nothing about
it <nor.. for that matter.- need a. crane operator know any trigonometry
to operate his machine safely). Humans know a lot about nature.
Only later does the theoretical aria lysis catch u p to support this
knowledge with theory. Hot all know ledge comes this way., but it is a
-’natural'' way - a mode of investigation that is comfortable for our
species and one that has been pretty successful.

One problem I work with is the relationship between cells of an
organism which result in the development of patterns. We know cells
have identical genetic programs guiding their behavior by directing
their interactions with their environment < whi ch.. of course., consists
mostly of other cells). But in spite of their identical instructions.,
they behave as if each cell had unioiue personal instructions like
players in a marching band - the outcome is a predictable pattern of
high precision that appears in spite of perturbations from outside
the organism. This is impossible to explain in light of present
knowledge even though we do know at least some of the processes going
on inside cells.

The model for this situation is a 'cellular automaton'. This is an
array < I stick to two-dimensional sheets) of individual "machines-'.,
each contro1 led by some sort of programmed interaction with the
environment <which consists partly or entirely of other such
machines). So far- the resu Its have been encouraging. The main
difficulty is presenting the user with important information in such
a way that one can develop the rules resulting in predictable
Patterns. The rules are embodied in a. 'transition matrix' O-eally
Just a fancy table) common to all cells. The matrix allows the cells
to find out what to do next under all sets of possible environmental
parameters and all possible internal states. Our program displays
the •"state-' of each cell as an integer <8-9) on the screen. We can
transform integers to symbols upon command so that the eye can easily
see patterns develop. A second display shows the state of a "clock"
within each cell - biological rhythms are probab ly avery important
element in the devlopmental sequence of animals and Plants. The
transition matrix is also displayed on command <at least one page at
a time., because the whole matrix has too many elements to fit on the
screen comfortably). Any of these displays can be modified by the
users as easily as you can modify text on the PET's screen. The
modifications then become part of the model from that moment on. The
goal of the user is to make a transition matrix that meets certain
requirements of pattern.. stabi lity.. and response to operative
interference. In other words., the model mimics nature.

i
1

The work is sti 11 in an ear- ly phase. Several undergraduates at
Stony Brook have done i nder̂ endent work on one or more of' these
programs arid have developed transition matrices -for a. number o-f
interesting and si unit i cant patterns. Interest ins ly enough., graduate
students have not shown -as much -flexibility and interest in this work
— and) o-f course., -faculty are even more mystified by the whole idea.
We started with several programs in FORTRAN and used a large
minicomputer <MOBCOMP IV.') to run them.

Our real progress be-si an when we transferred the work to a PET
£001-8. The rich graphic reretoire and screen addressab le feature
made the PET the best persona1 computer for the Job. We have gone
through mariy versions of the original programs. More and more of the
routines -are written in assemb ly language. Our latest version is
entirely in assembly. It is a Joy to run (except for a. bit of
nuisance in the FILE.. LOAD.. SAVE routines which Commodore never meant
for us to mess with>. The speed of the routines is so areat that we
have had to Put in WAIT sequences to slow things down. We -are aoins
to play around a bit with speed verus user responses this com in-3
year. There is probab ly an optimum range. After all., the kid p laying
with the toy crane wouldn't learn very much if the crane either
exploded or the load flew to the top of the boom at the instant the
kid touched the controls !

I have learned many things from writing these programs' For
ex amp le, it is worth spending a lot of energy arid ingenuity on ways
the user can erase something Just given to the program. Vou must be
ab le to 'back up'' s o to speak even though it is rare ly needed.
Remember how you feIt when you took the wrong turn off the parkway ?
Vou could not back u p arid corect your error. Vou were penalized by
the system ! you had to continue down the wrong road until you could
figure out some way to get back on the track. Nothing can turn off
the enthusiastic user faster than not being -ab le to escape from some
run that has obviously gone wrong. When you write assembly routines
you have to provide all the polite responses the PET makes when you
are working in BASIC such as allowing you to delete or change the
response to an INPUT. We have also found that a program to be used
repeated ly can <arid should) have fewer arid shorter prompts - but they
should be consistent in requiring the same kind of response in each
case. If you call for a number in one case -arid a letter in another,
make the prompts very different in appearance by making one in
capitals and the other in #? or something like that. Users learn to
work very fast but make mistakes if their responses are not proper ly
cued.

If' you are interested in more detai Is of this work, with reference
to biological works, there is a summary in the PERSONAL COMPUTING
PROCEEDINGS of the AFIPS NATIONAL COMPUTER CONFERENCE, 1979, Pages
187-191. I would be happy to talk to anyone interested in trying out
computer-run models in this mode.

F’i--<=*-fc-t"=» Pr i nter Listin-3s

To list a program to a printer connected to the PET's IEEE port
try:

0PEN4,4:CMD4,"Title":LIST

This will provide a title for your listins. On the PET/CBM printer you
can enhance the title by us ina-'

0PEN4,4:CMD4,CHR$<1>,"Tit le"-LIST

The PAPER bummer 1 980

F = - E T F 7 i

by Ra Iph Bress ler

After using the PET -for a whi le you begin to realize that to
exploit its -full potential you need more than the standard BASIC
commands. PEEKs arid POKEs become second nature and even a few short
machine language routines may creep into your programs. The PET f i le
commands are indespensib le when using almost any of the available
peripheral devices. These commands are necessary for listing prigrams
on the printer. The PET printers also make extensive use of these
commands for formatting data sent to them. Fi le commands must be used
when employing the cassette tape deck for data storage arid the disk
drive for program recording or data storage.

This article assumes that not everyone has t 1295 for a disk but
may want to store data on tape. I.- therefore.- have concentrated on
the use of the file commands with the tape deck. Since printers arid
disks are beginning to find their way into the hands of more people
an article dealing with these devices and their file commands would
be appreciated by many users.

The PET BASIC file commands are listed below. In these commands LF
stands for logical fi le number.- DV means device number.- 10 is the
input or output option.- FN is the file name.- and VL is the variable
list.

OPEN Initializes a file for use by the PET
CLOSE Tells PET to remove a file from use
PRINT# Writes data to a file
INPUT# Reads data from a file
GET# Gets one character at a. time from a f i le
CMC Sends BASIC's output to a. fi le
ST Records the status of I/O operations

OPEN LF, DV, 10, FN

This command tells the PET to send information to a particular
device or retrieve it from that device. Only the LF must be given but
it is best to specify all the parameters. LF can be between 1 and 255
but only 18 files can be open at once. This is many more than you
will ever need to open at one time. DV tells the PET which device to
•address as f o I lows :

© = PET keyboard
1 = first cassette drive
2 = second cassette drive
3 = PET screen
4 = PET printer
8 = PET disk.

Actually 4 to 15 address the IEEE port

If not specified DV defaults to 1, or the first tap-e unit. For the
I/O option 10 may have the following values-'

8 = read file only.
1 = write file only.
2 = write file with an End Of Tape marker.

Thf Rm F'EER Summer 1 980

4
1

i
1

o
m

o

m
m

>

The FN is used to name data ti les when they are recorded on tape. It
is not necessary to use a tile name but it helps prevent reading the
wrong data tile. If FN is specified as 'Class Data'- the PET will
search a tape unti I it finds the fi le by that name. The LF, DV, 10
can be computed expressions and FN can be a string variable. OPEN

1.. flX.. WE$ is legal, some common ex amp les follow1

OPEN 1.. 1 .■ 1 OPENs file #1 to write to tape deck #1
OPEN 1,1,0 OPENs file #1 to read form tape deck #1
OPEN 4,4 OPENs file #4 to output to the printer

Remember not to forget commas, ft Iso, if you want to specify a file
name you must include all other parameters.

CLOSE LF

This command removes the fi le from use and outputs any characters
stored in the buffer to the tape and writes and end of file marker if
the tape was being used. To write to a file and then read from it
later you must close it first. Failure to CLOSE a file before OPENing
again can be a fatal error.

PRINT# LF, VL

This statement outputs the variable list to the indicated file.
The file must be OPEN arid 10 must = 1 for writing. Be sure to spe 11
out PRINT# because ?# is not legal. This command will write into the
file exactly what PRINT would put on the screen if you handle it
correctly. It is good practice to follow a PRINT# command with a
PRINT Just to check to see what data is being sent. Examine the
f o I lowing examp les •'

OPEN 4,4 PRINT#4, X* Will print on the printer the
string represented by X*

OPEN 1,1,1: PRINT#l,fl Will write the number represented
by fl onto tape deck #1

INPUT# LF, VL

INPUT# reads data from a file and assigns the data to the variable
indicated. The file must be OPEN to read <10=0}. There are three
problems which may interfere with successfu 1 ly reading data from a
tape. What is read using INPUT# must be EXflCTLV what was written
using the PRINT# command. If there is a difference art error will
occur. Do not INPUT# a string of characters over 7 9 in length since
this will close the file and not allow any more operations. Finally,
you may use INPUT# to read more than one variable on a line but do
not use PRINT# to write more than one.

INPUT#2, N, N*, FG

PR I NT#2, N, N*, FG

PRINT#2, N
PRINT#2, N$
PRINT#2, FG

This will read the variables
indicated with no problems.
This will cause the above INPUT#
to malfunction and DflTfl will
not be read correctly.
This is the correct way to write
the three variables onto tape so
that INPUT# will read them.

T h_| *=- PmFER bummer 1380

GET# LF, VL

Just like the GET command this mill arato one character from a file
■at a time. The best way to use this is to only GET# a strina variable
since a. number can be read as a str ina but not vice versa. This
command works well for readina DATA from any file especially when you
aren't quite sure waht the data is. GET# will not stop automatically
at the end of a. fi le. To solve this problem always write a character
at the end of your data, f i les and then check for that character.

CMD LF

This command allows the PET to communicate directly with a. file.
When BASIC does something it sends what it has done to the operating
system. The operating system usually responds by printing information
on the screen. CMC redirects BASIC's output to a. file. For example'

OPEN 4,4 ' CMD 4 : LIST

will cause the listing to be output to the printer and not to the
screen. After you are through create a S'VMTAX ERROR to get things
back to normal.

ST - Status word

This variable is reserved to tell the status of any I/O operation
after it has been performed. For example, after loading a program
from tane ST should equal 0 if there were no errors in reading. The
values ST may take during tape I/O are-'

4 short block tried to read program as data
8 long b lock tried to read program as data
16 unrecoveraij le read error PET unab le to read your tape,
32 checksum error clean tape heads
64 e n d of file useful to determine if you
128 end of tape ar e at end of f i le

To check the end of a. tape you could use IF CST> AND 128 THEN....
The following program illistrates the use of some of these

commands. It also corrects for two problems which plagued old PETS
but were corrected in the new.

10 "DATA"
106 POKE 243,122 •' POKE 244,2
105 OPEN 1,1,1
HO FOR N = 1 TO 500
120 PRINT#1, N : GOSUB 500
130 PRINT#1, X* • GOSUB 500
140 NEXTN CLOSE1 PRINT"REWIND & PRESS ANV KEV"
150 GETXIS -'IF Xl*="" THEN 150
160 OPEN 1,1,0
170 FOR N = 1 TO 500
180 INPUT#1, X, Z t
190 NEXTXN •' CLOSE 1 PRINT "END OF DEMO" : END
500 REM***BUFFER CHECKER***
510 IF Z9 <= PEEK<625 > THEN 530
520 POKE 59411,53 - FOR Z9 = 1 TO 140 : NEXT • POKE 59411,61
530 Z9=PEEK<625);RETURN

The F’MF'EIF: :-:i_4mrrier 1 y S 0

Line 10© makes sure -that -the data ti le header is written
correctly. The subroutine at 500 to 530 is also important. When usina
PRINT# PET does not immediately write data on tape but stores it in a
buffer. This buffer can contain 191 characters arid when it is full
the PET dumps it onto the tape. Between each 'dump' of the data is an
interblock sap, a physical space on the tape. This sap is important
when readina the data back. Sometimes the sap is too small arid the
data written cannot be read back correctly. The subroutine included
increases the sap between blocks. For the second cassette the
following changes should be made

100 POKE 243,58 POKE 244,3
510 IF Z30PEEK<626> THEN 530
530 Z9=PEEK < 626 > RETURN

The pro nr a/n below is from Commodore arid will show the data from
any data file in 80 character hunks.

0

-SHOW TRPE---------

PR I NT "n — SHOW TAPE--- W
110 PRINT"PUT VOUR DflTfl TAPE IN
120 PRINT"CASSETTE #1 AND REWIND IT.
130 GOSUB 430
140 PRINT"WTHE TAPE WILL EE READ AND SHOWN TO VOU
150 PRINT"IN 80 CHARACTERS HUNKS. WHEN VOU WANT
160 PRINT"TO STOP PRESS flNV KEV. I HE PROGRAM
170 PRINT"ASK IF VOU WANT MORE DATA TO BE SHOWN.
180 GOSUB 430
190 OPEN 1
200 PR I NT "IT1: H=0
210 H=H+1 •• PR I NT " HUNK # " H
220 FOR J= 1 TO 80
230 GET#1,B$
240 IF ST > 0 THEN 350
250 IF fiSC(Bt> = 13 THEN PRINT" "; :GOTO270
260 PRINTED;
270 NEXT J
280 PRINT
290 GETA*
300 IFA$=""THEN320
310 PRINT"MORE?";
320 GETA$:IFfl$=""THEN320
330 IFfi*="V"THENPRINT:G0T0210
340 END
350 PRINT:PRINT"STATUS WORD IS;"ST
360 IF (8T> AND 4 THEN PRINT"SHORT BLOCK
370 IF <ST> AND 8 THEN PRINT"LONG BLOCK
380 IF (ST) AND 16 THEN PR I NT "READ ERROR-
390 IF (ST> AND 32 THEN PRINT"CHECKSUM ERROR
400 IF (ST) AND 64 THEN PRINT"END OF FILE
410 IF (ST;- AND 128 THEN PR I NT "END OF TAPE
420 END
430 PRINT:PRINT"PRESS flNV KEV
440 GETflf:IFAt=""THEN440
450 PRINT:RETURN

The PAPE F: 39 bummer lyyu

Mer-2) i n-2* Programs

by JoAnn Corn i to
Ralph Bressler

The ab i lity to me rue programs is of great i mportance to the
serious software developer. Be in 3 able to combine to programs or add
pre-programmed subroutines saves time and frees the proarammer for
more creative work. Before discussing some of the ways to combine
pro-grams., it is important to define two terms. Merging can indicate
two separate and different functions. Append in-3 means adding code to
the end of a program only. Append in-3 will not place lines 56-100 in
the middle of the program. Weaving will perform this function, as
well as appending and is., therefore., the more powerful tool.

The simplest way to weave requires no extra hardware and no
special preparation of your prepared subroutines. Program your
subroutines so that they fit on the top 18 lines of the screen when
listed. Now follow the procedure outlined below after recording a
copy of your routine on tape:

1> Home the cursor and LIST the program; scroll the
LISTing to the very top of the screen

ciPlace the cursor on top of the READV and type
LOAD. Press PLAV when -asked and then hit RETURN.

3) When the READV is given home the cursor and hit
RETURN for each line of code on the screen.

Again., this method requires no special harware or software and will
weave your subroutine into the main program. The big disadvantage is
that the routines must be very short.

Another way to weave programs is to use the Librarian program by
D. J. David in the April 1980 issue of Microcomputing <p . 172>. This
amazing 25 line program allows you to program your routines and then
record th*m using the special method in the program. This saved
routine is not compatible with the normal PET save but is read by the
Librarian program. This program resides at the beginning of any
program arid Performs several useful functions. It has automatic line
numbering as well as the weaving feature. Librarian will also save a
part of a program bewteen certain line numbers. For the program and
a. complete description see the article mentioned.

Another way to merge is to use the MERGE program in the February
issue of CURSOR magazine. This program will perform any weave or
append and works with normally constructed and SAVEd programs. This
program does require the L-ommodore <£'04u Dual Floppy Disk Drive. If
you already have the drive the program is great but $1300 would be a
lot to pay for this function alone.

There are two remaining ways I know of to append subroutines to
existing main programs. In reality., appending is ctuite adequate
since you are only adding subroutines in many cases. Subroutines can
and should go at the end of the program any way. i-ee the article
...Uood Educational Program' in this issue. ? The Basic Programmer's

Tool Kit is the easiest way to append that I know of. This piece of
firmware from Nestar Corporation costs bewteen $50 and $80. The
’chip' adds ly commands to your PET and by typing APPEND you can
simply add subroutines directly to the end of any program. This
r e otu ires n o s p e c i a. 1 p r e p ar at i o n o f the r o u t i n e s w h i c h c an a. I s o b e

The PRPER -=+0 bummer- lytfy

loaded as- norma 1 pro3rams.
The 1 as "t m eth o d o f ap p e n d i n g p r o g r axn s o r s u b r out i nes as a. i n

^ectuires no special hardware but does re*-tuire that the routines be
fpecial ly prepared. Once the ta>^es have been prepared the routines
an be added to any proaram. The special preparation., therefore* is

not a areat disadvantage. Follow the directions below exactly as
written. This method is contributed by Larry Tesler and Jim
Butterfie Id.

Step 1: Preparing the Subroutine

a) Enter the routine from the keyboard or LORD it from tape.

b> Put a blank tape in the cassette recorder.

c> Type - OPEN 1,1,1 •CMDl: LIST-' and hit RETURN.

d> Now Place RECORD -and PLAY.

e> When the cursor appears type "?,,P0KE611,0"; PRINT# 1 : CLOSE 1 '
and hit RETURN.

Step 2 : Merging Subroutines

a) Enter or LOAD the program to which the routines are to be
merged.

b) Place the tape with the prepared subroutine from Step 1 in
the recorder.

c> Type -OPEN I" and hit RETURN,

d > Press PLAV.

e> When the tape stops type CcIr3[4 down].

f > Type -■ POKES 11,1: P0KE525,1: P0KE527,13: ? " C home] "'' but RETURN.

g> Type "Chome]C6 down].

h > Type POKES 11,1: R0KE525,1 = P0KE527,13; ? " C home] "'' and h i t
RETURN.

The tape should start arid continue until a. ?SYNTAX ERROR or ?0UT OF
DATA message appears between the two lines you entered. If a message
does not appear after a reasonable time press RUN/STOP. The merge is
now complete.

i > Type 'CLOSE 1' and hit RETURN.

Vou can now LIST the program and see that the append has been done.
Using one or several of these techniques you can develop your own

subroutines and add them to your programs as needed. The Program
Exchange has many of these subroutines available under the titles of
Jsefu 1 Rot 1 arid Useful R'ot 2. Each package contains 5 to 7 routines
Including auto line numbering and deleting arid repeating keys.

#
The PRPER 41 Summer 19Q0

Mir-i y0 toy 5tJ P lo-t-fc ± Routine

by Bous Haluza

R I though -the PET does not have a built in hish resolution mode,
reasonab le plots cari be obtained by us ins the «tuarter square blocks.
Us ins them <*uadrup les the PET's resolution si Mins an 80 by 50 array
of points for srar-hs, charts, games, etc.

Usins this method is made easy with the routine called by the
demonstration prosrarn shown in List ins 1. After the array 15) has
been properly initialized, callins the subroutine in line 50 with the
X and V coordinates in the var- i ab les K‘ and V will either set or reset
that point, dependins on the value of Z. If Z is positive, the point
will be turned on (.'set).; if Z is negative the point will be turned
off <reset). Nothing will happen if Z is zero.

The routine works by assisnins a value to each ciuarter character
block as shown in Fisure 1. Oddins the values of the blocks to be
turned on in any character sives the character code. The array T'i
contains the POKE values for the correct characters for each
character code.

Settins or resettins any particular block is done by addins or
subtracting the value of the block from the current character code.
Care must be taken to assure that the block to be set (or reset)
isn't already set Cor reset).

The routine in line 50 starts by findins the location of the
character containing the block to be plotted and savins it in L. The
loop looks u p the character code and stores it in K.

In line 51 I is set to the value of the block to be plotted.
•" < < KflNIi I) >0) = (.ZC0) •' checks to see that the block isn't already
plotted.; if not it is Plotted by addins or subtracting the block
value from the character code arid POKE ins the correct value back into
location L.

When us ins the subroutine in another prosrarn remember to set K, V
and Z; include line 5.; and be sure to keep the PATH in line 10
separate from any other DATA the prosrarn needs.

*

1 - _»

■=* ■_"

List ins — 1 F i -=iu r-«

1 REM 80 EV 50 PLOTTING ROUTINE
2 REM EV DOIJG HALUZA
3 PR I NT "nr.;
5 DIMTV< 1 5 >:FORI=QTO15:REflDTK<I)
6 NEXT:Z=i:REM ##SETS UP DflTfl TABLE##
10 DATA32,l26,l24,226,I23,97,255,236
11 DATA 108,127,225,251,98,252,254,160
12 REM ###DEM0N8TRATION###
15 X=X+1 :V=-20#SIN<X#.075)+20.5
16 GOSl IE50: GOTn 15
18 REM ###PL0TTING SUBROUTINE###
50 L=32768+1 NT C X/2 > +40# I NT <V/2 >: K=0 ■' I =PEEK < L >: FOR J=0TO 15 : IFI =T*i (J > THENK=J
51 NEXT: I =2 t< <: XAND1 > + < VAND1 > #2 > : IF < < KANDI) >0 > = (Z<8 > THENPOKEL, T*; < K+1 #SGN < Z) >
52 RETURN

P e e k x n-2« 3.+ E R S X C

by Bous Ha. luza

Anyone who has tried PEEKins at BASIC on an old PET knows that you
always set a 0 no matter- what location you look '' at, whether that
location contains a 0 or not. Commodore arid Microsoft did this to try
to protect their BASIC. Vou may be able to understand why this
happens by looking at the disassembly list ins from the PET below-'

The PAPER -4-2 : Summer- 1

B6E6

D6E9
B6EB
B6EB
B6EF
B6F1
B6F3
B6F5
D6F6

26 DO B6

R0 00
C9 00
90 04
C9 El
90 03
B1 08
R8
4C 87 B2

JSR B6B©

LBV #0
CMP #*C0
BCC D6F3
CMP #$E1
BCC B6F6
LBfl < 08 > , V
TAV
JMP B287

Evaluates a. formu la an if it's
0 to 65535 ruts it in 8, 9
Zer o V r e?i s+er
Checks i f MSB i s between tC& and
*E1 (e?. try in ii to PEEK at BASIO
arid if so puts © in V. BASIC is
locations $C©0© to $ E10©
Bees the PEEK
Put it in V
Load the floatins point
accumulator with V

Vou see in #B6EB that a check is ma.de to see if you're try ina to
look at BRSIC and doesn't do the F'EEK if you are. This can be easi ly
defeated by the routine below'

03F8
03FB
03FB

2© B0 B6 JSR $B6B© Evaluate expression
R0 00 LBV #0 Zero V
4C F3 B6 JMP $B6F3 find Jump in after check

This routine is put into the very top of the second cassette buffer
and can be loaded usins the monitor and typins over the line so it
looks like this

.M 03F8 03FB

. 03F8 20 B0 B6 R0 09 4C F3 B6

or by us ins the follow ins BASIC routine arid USR instead of PEEK.

10 BATA 32,208,214,160,©,76,243,214
20 FOR I = 1016 TO 1023 REAB N POKE I,N NEXT
30 POKE 1,248 POKE 2,3

P E T s R o u n d o-f'+' Pr-oto lerns

by Rap Ih Bress ler

The PET has some serious problems with seemins ly simple math
problems. The simplest iI lustration of this problem is to type
"'? 7*7, 7T2 '. The PET will print '49 49.000©0©1"' ! Because the
PET uses natural loss to do exponentiation (.'and square roots> an
error of a few bits was introduced. In this case the error was larse
enoush to show, but in some cases it isn't.

I was writins a prosrarn that was: supposed to print Pythagorean
triples such as 3 4 5. These -ar-e risht trians les whose sides have
inteser lenshts. The prosrarn was supposed to print the value of the
sides of the trians le arid then print a. star if it was a. triple. To
check the value of the hypotenuse to see if it was an inteser I used
the statment•

10© IF I NT < HVF'O > =HVPO THEN PRINT

Imagine my surprise when 3 4 5 appeared without a star! What was
more amazins was that the PET printed 5 for the value of HVPO but did
not recosnize it as 5. I've found the followins statment works
better

I©© IF STR*<INT<HVPO>>=STR*<HVPO> THEN PRINT “ *■“

T <=• P h F ’ E R -4 - i_4 m m •=■ t~ l y u

ITS COVERS

A BEAUTIFUL
COMPLEMENT
TO ANY DECOR!

• A ttrac tive , Durable, Leather-G rained Vinyl
• Double S titching for Extra Strength
• Corded Seams Assure Perfect Fit
• Colors - Gold, C hestnut Brown, Olive Green

or Black

P ET /C B M - $18 95
Apple II - $ 1 2 .9 5
Apple D isk - $ 8 .95

OTHER COMPUTER
COVERS AVAILABLE
WRITE FOR DETAILS

NEW-CURSOR FOR PET 2001 OLD ROM
IN S TA N T PUSHBUTTON CURSOR RETRIEVAL
• Reviewed in Issue 1 of COMPUTE

Restart without touching power
Machine language programs in second cassette buffer not lost.
Simple, illustrated instructions
Installed in minutes - no soldering
Improved mounting — no sticky tape

4>

UNCRASHER for PET/CBM 2001 New ROM — $1 4 9 C

INTERNATIONAL TECHNICAL SYSTEMS, INC.
Box 2 6 4 - 3 Woodbridge. V irg inia 2 2 194

Phone Orders (804) 262-9709

VISA w m m
■ M B SH IP P IN G AND H ANDLING ADD S i 00

PET RABBIT
Load, Save, Verify, Execute

8 K in 38 seconds versus

PETs 2 Minute 45 seconds,

plus m ore!
High-speed Cassette Routines work with 8K, 16K, or 32K

new ROM PETs which have the new Commodore cassette
deck (like the external vergion which sells for $95.00).
Note: If you have a new ROM PET with the old style
lift-top deck, everything but the high-speed cassette
routines will work.

— Auto repeat of any key held down, toggle character
set.

— RAM Memory Test, convert I t 's to hex and decimal.

12 Rabbit Commands

Note: Rabbit is 2K of machine code at $1800 for 8K PETS,
$3000 or $3800 for 16K PETS, or $7000 or $7800 for 32K
PETS. (Specify one of the 5 versions.)

Cassette and Manual — $29.95 (Add $5.00 for foreign)

Eastern House Software
3239 Linda Dr. Winston-Salem, N. C. 27106

Finally, MAE - A PET
DISK-Based MACRO
ASSEMBLER/TEXT
EDITOR Works with 32K PET

— Works with 2040 Disk, and can drive 2022/2023
Printer, and/or RS232/20 ma Device thru User Port.

— 100% Disk Based, 100% Machine Language.
— Macros, Conditional Assembly, and a new feature we

developed called Interactive Assembly.
— Coexists with Basic, Auto character repeat, Sorted

Symbol Table.
— 27 Commands, 26 Pseudo Ops, 5 Conditional Ops, 38

Error Codes.
— Creates relocatable object code <»” disk.
— Assemble from Memory or Disk.
— String search, search and replace, and inter line edit.
— Auto line#-ing, move, copy, delete, renumber.
— Labels up to 31 characters — user specifies length.
— Includes extention to PET monitor (disassemble,

trace, etc.), Library of PET ROM locations, Relocat
ing Loader, plus more.

Manual, Diskette, U. S. postage — $169.95
(Requires completion of License Agreement —

Write for details)

Eastern House Software
3239 Linda Drive Winston-Salem, N. C. 27106

P E T /C B M U N C R A S H E R “
W H A T IS IT? — U N C R A S H E R " is a tw o bu tton dev ice th a t

a llow s PET/CBM users to rega in c o n tro l o f a c u rs o rth a t's
been lo s t due to p ro g ra m m in g errors. BASIC program s
may be recovered. M a ch in e language program s in the
second casse tte b u ffe r are no t d is tu rb e d e ither.

W H IC H P E T s /C B M s ? — U N C R ASH ER ” is fo r a ll PET/CBM
com pute rs th a t use the "N E W " V e rs ion 2 ROMs. (O lder
m ode l PETs sh o u ld use the ITS NEW -CURSOR " .)

D O ES IT W O R K ? — You b e t!!! See the de ta ile d rev iew of
the type s o f crashes and the co n ce p t o f recovery in the
firs t issue of C om pute .

IN S TA LL A TIO N — S im p le , co m p le te ly illu s tra te d in s tru c
tio n s us ing o n ly a P h illip s sc re w d rive r ensure in s ta lla tio n
in m inu tes. No so lde ring or m o d ifica ito n s to the com pute r.

O P E R A T IO N — Jus t fo llo w the s im p le s te p s — push the
b u tto n s and reset the s tack p o in te r— and PRESTO . . .
recovery!

And all this happens without powering the PET/CBM down and up.

W H Y U N C R A S H E R "? — No firs t c lass com pu te r such as
the PET/CBM sh o u ld be w ith o u t th is ca p a b ility . W h e th e r
your fancy be program m ing, business, education , or hobby,
hobby, U N C R AS H E R " saves you tim e by un crash ing you r
s lip -ups .

A V A IL A B IL IT Y — N ow in b e tte r com pu te r sto res, o r o rde r
d ire c t from ITS, m ade by the peop le w h o b rough t you
N E W -C U R S O R "._______________________________________

INTERNATIONAL TECHNICAL SYSTEMS INC.
P O BO X 264 -Q W O O D B R ID G E , V IR G IN IA 22194

CUSTO M ER SERVICES
R IC H M O N D V IR G IN IA (804) 262 -97 09

COMPUTER PROGRAMMING:
BASIC for Microcomputers

Bridge the Classroom Literacy Gap.
A series of five full-color filmstrips and five
cassettes prepared by Arnold and Seth Fried
man. This is a systematic approach to the essen
tials of the BASIC language.This series can be
used at any grade level to teach the universal
concepts which apply to the PET, TRS-80, Apple
or any microcomputer.

PART I Getting Started

PART II Mathematical Operations

PART III Loops and Subroutines

PART IV Original Programming

PART V Techniques and Flow Charts
Available for $84.00 for the set. Also available
for preview.

EDUCATIONAL ACTIVITIES
Freeport, NY 11520

PET™ 2001 STUDENT WORKBOOKS
For Classes Beginning to Program

COMPLETE TEACHING UNITS
• Step-By-Step Instruction

(Teachers Can Be Beginners, Too!)
• Daily Lesson Plans, Classwork & Homework

W orksheets, Quizzes
• Hands-On and Hands-Off Exercises
• Group and Individual Assignm ents
FEED ME, I ’ M YOUR PET™ (Beginner-1)
LOOKING GOOD WITH YOUR PET (Interm ediate-1)
TEACHER’S PET (Plans, Quizzes, Answer Key)
W orkbooks are $4.35. Quantity discounts available.
TEACHER’S PET is $4.00 or FREE with workbook orders
of 25 or more.

EDUCATIONAL SOFTWARE
• High Quality Teaching Skills

and Programming Skills
• Graphics Used to Enhance Learning

REMEDIAL MATH PACKAGE (84 Concepts)
MATH IN SCIENCE SERIES

Signed Numbers, Physics, Primary Primer, Elementary
Grade topics and More. We Will Send a Price List.

COW BAY COMPUTING
Box 515 • Manhasset, NY 11030

F.O.B. M anhasset, NY

B.C. COMMUNICATIONS
The Family Computer Shop

Software Swapping
Factory Authorized Service Center (Same Day Service)
Commodore Word Pro III
Word Processing Service
Computer Products leasing w ith buy in percentage
Factory trained personnel
Centronics Printers at very special prices
Consummable supplies at discounts
Reference manuals and magazines available
Atari and APPLE III “ hands-on” demos
Commodore’s new 80 character Computer
NEC & Qume Electronic typew riters
Special interfaces

207 DEPOT ROAD, P.O. BOX 228
HUNTINGTON STATION, NEW YORK 11746

TELEPHONE: AREA CODE 516D 549-8833 or
692-2735

Riley Enterprises announces....

TOP Quality Vinyl Cassette Holders
12 Capacity in Black or Brown $2.80
16 Capacity in Blk,Org or Lime 3*50

Add $2 for shipping orders under $20

Other types and colors are special
order.

75 Pearson Street
Portsmouth, NH 03801 603-̂ +36-6564

P r o g r a m s !!
_ • B u s i n e s s R e s e a r c h $ 5 0

• H o m e & S m a l l B u s i n e s s $ 1 5 - 4 0

• G a m e s & S i m u l a t i o n s $ i 5 e a .

• E d uc a t i o n (H S) P a c k S15
S e n d f o r c o m p l e t e c a t a l o g !

H a r r y H . B r i l e y
S h o p p e r • H o m e A d d r e s s e r C a t a l o g Info.

• I n v e n t o r y * D e l u x e A d d r e s s e r P.O. Box 2913
M u s e u m ! • D i n n e r ' s O n ! L ivermore , C A .
M a n s i o n ! • F u r T r a p p e r 945 5 0
P e n t a g o n ! • H i g h S e a s (415) 455 *-913 9

AMERICAN PERIPHERALS
First in Education

Have You Seen?:
• MTU’s new Visible Memory
• 3M 's Datronics card reader with our special

test marking software
• Commodore’s new 80 column CBM with

BASIC 4.0 and WordPro 4
• Centronics’ new 737 high quality printer
• Xerox’s Diablo printers for letter

quality output
Did You Know?:
Atari now has a special 3 tor 2 deal

tor schools
Send for a complete list of our full line

I of educational and business software.

I

3 Bangor Street
Lindenhurst, NY 11757

(516) 226-5849 J

COMPUTER LAND of Nassau
“ The Full Service Computer Store”

Come SEE what you ’ve only READ about.

H a r d w a r e . . . A p p l e . . . P E T . . . A t a r i . . .T e xas
In s t r u m e n ts . . .C ro m e m co .. .D y n a b y te . . .com
p u te rs fo r pe rson a l and p ro fe s s io n a l
n e e d s . . . D iab lo .. . C e n tron ics . . . S p in w r i te r . . .
printers and disk drives to complete a system.

Software...programs for ALL the machines we
carry...programs for recreation, education and
business.

Books and Magazines...Osborne...B lacksburg
Group.. .Hayden.. .Sybex.. .Sce lb i. . .or pick up a
copy of your favorite magazine.

Computer land
79 Westbury Avenue

Carle Place, NY 11514

CENTERBROOK SOFTWARE
DESIGNS

“ Learning is Fun”
Remedial Math and Reading

Science, Utilities, and Games
We have over 70 programs in the topics listed
above. All programs work in 8k and there are
versions for all PETs. Prices for most programs
are in the $10 to $20 range and special packages
are available. New programs are produced every
month and custom programming is available.

For a catalog and more information write or call:

Centerbrook Software Designs
98 Emily Drive

Centereach, NY 11720
516-585-2402

American Peripherals
3 Bangor Street

Lindenhurst, NY 11757
516-226-5849

W E S T R I V E R E L E C T R O N I C S
Can Your PET accurately represent complex
mathematical symbols such as integration or ex
ponentiation?

I Can you write equations which include Greek
| symbols and closed intervals?

| Would you be able to have your PET display
- French, Spanish, German or other European

languages as they are written?
If you answered no to any of these questions
then you need our PET Alternate Character Set

| ROMs. Our replacement character generator
I chips do all of the above. In the UPPER/lower
1 case mode the shifted upper row of characters
1 and the numbers are redefined. There are two
I ROMs, one for the foreign languages and one for

I math symbols.
Math Character RO M $75.00

| Foreign Language RO M 75.00

I PO Box 605
I Stony Brook, NY 11790

8K or
more,
model

*P E T i t a p ro d u c t o f C o m m o d o re B u sin ess M a c h in e s , In c . 2001-8

^QUALITY SOFTWARE FOR THE PET*

S X P l O
t7 .9S

* £ *

> S W E E - P I N G
$5.95

c H E q U E ”

-4 - METRIC-CAIC ■ Turn your
PET into a powerful stack-oriented (RPN)
calculator with many extras! Log, trig,
exponential, and many other useful
scientific functions in addition to
Metric-Fnglish unit conversions. Switch
between two "keyboards" at the touch of
a key. See the stack while you operate.
Look at all 20 addressable memories at
one time. More functions than calculators
costing many times as much. Unlike other
converters, this one lets you use results
in other calculations! $7.95

± BILLBOARD" Turn your store window or counter into an attention-getting
advertising display! With BILLBOARD, you simply type in the message of your choice
(up to 254 characters), then see it march across the screen in qiant, one-inch high
letters ... even pause, or flash off and on if you like! A real crowd-stopper, and
it costs less than a single ad. Order yours today! $49.95

MI C RO S O F T W A R E S Y S T E M S
P.O. Box 1442, Woodbridge, VA 22193

Send check or money order. Allow
two weeks tor check to clear. VA residents
add 4% tax. Dealer Inquiries invited.

1
P E T ' M A C H IN E L A N G U A G E G U ID E

8> ABACUS SOFTWAMf

Contents include sections on :
• in p u t and output routines.
• F ix e d po int, floating po int,

and A sc ii number conversion .
• C lo c k s and tim ers.
•B u ilt - in a rithm etic functions.
•P rog ram m ing h ints and sugges

tions.
•M a n y sample program s.

If you are interested in or are already into machine language
programming on the PET, then this invaluable guide is for
you. More than 30 of the PET's built-in routines are fu lly
detailed so that the reader can im mediately put them to good
use.
Available for $6 .95 + .75 postage. Michigan residents please
include 4% state sales tax. V IS A and Mastercharge cards
accepted • give card number and expiration date. Quantity
discounts are available.

A B A C U S S O F T W A R E
P. 0 . Box 7211
Grand Rapids, Michigan 49510

£ PET • PET • PET • PET • PET • PET • PET • PET e P£T • PET • PET • PET • PET • PET

I PET PRODUCTS ^
if Program* — Workbook*

for Floppy Dlak — for Casaett*

P R O G R A M S
SW-1* M A IL S m a ilin g lis t s y s te m
S W -2 * C H E C K B O O K r e c o rd
S W -3 * A C C O U N T S k e e p tra c k o f w h o o w e s y o u h o w
S W -4 M E O IT c r e a te a n d m a in ta in d a ta f ile s
SW-5* C A L E N D A R a p p o in tm e n ts m e e t in g s a t a g la

W ORKBOOKS
W B -1 Getting Started with Your P E T
W B -2 P €T String end Array Handling

h W B - 3 P f T Graphic*
W B -4 P f T Cassette I/O
W B -5 MiaceNaneoua P£T Feature*
W B -6 PET Control and L o *c

‘ T h e s e p r o g ra m s a re s p e c ia l p u rp o s e d a ta b a s e m a n a g e m e n t s y s te m s T h e y a i l c a n
• S o r t n u m e r ic o r s t r in g f ie ld s
• S e le c t b a s e d o n n u m e r i c o r s t r in g (=)
• S e le c t b a s e d o n s u b s t r in g m a tc h
• S e le c t b a s e d o n r a n g e o f e n t r y n u m b e r
P r ic e s $ 9 9 0 e a c h f o r p r o g r a m s u s in g c a s s e t t e s t o r a g e f o r d a ta

$ 1 2 9 5 e a c h u s in g s e q u e n t ia l f lo p p y d is k s t o r a g e fo r d a ta
$ 5 9 5 e a c h fo r in s t r u c t io n m a n u a l , a p p r o x im a t e ly 4 0 p a g e s

A d d $1 50 fo r s h ip p in g a n d h a n d lin g

$ 3 9 5
S 3 9 5 m
$4 9 5 S
$4 9 5 *
S 3 9 5 £
S 3 9 5 ft.

M o n e y b a c * g u a ra n te e
TIS
P.O. Box *21, Dept. PP
Loe Alamo*. NM 17544

PET is a t ra d e m a r k o f C o m m o d o r e B u s in e s s M a c h in e s 2*
UJa •
• PET • PET • PET • PET • PET • PET • PET • PET • PET * PET • PET • PET • PET • PET

By taking "the integer value "the round off error- is removed ■form "the
left half. Usina STR# takes advantage of the fact that the PET prints
''5'' even though it is not exactly 5; this takes cere of the round off
error on the right side. Comparing the numbers as strings removes the ■ ■
invisible" round off error.
Problems also exist with the trig functions. Try this:

PRINT COS<0)IF COS<0)=1 THEN PRINT "OK"

Even though it prints! it really isn't, figain STRt will do the
trick:

IF STR$ < COS <! 0 > > =" 1" THEN PR I NT "OK"

Comparing numbers as strings should take care of the PET's round
off error problems.

L_ I F'y Meet i n-=* I n-forma.-t i on

This newsletter will carry announcements of LIPS meetings. Since
editing printing and mailing the newsletter takes some time.,
announcements may not reach everyone on time. Please mark the following
dates on your calendar- for LIPS meetings.

December 11 January 8 February 12

Rll meetings are on Thursdays at 4 :00 F‘M at HarborfieIds HS..
Green lawn. Directions and more meeting information may be obtained by
calling (516> 535-2402 between 7 :00 and 10:00 PN or (516) 261-4900 ex.
191 between 8 :00 FlM and 2 :00 PM Cask for Ralph Bressler). Rny
interested persons are invited to attend. Please watch for changes in
each issue of The F'HF'ER.

The Harborf ie Ids Computer Center has 1 8K old ROM F'ET.- 9 8K new ROM
PETs and 2 32K new ROM PETs. We also have a 2040 Dual Floppy Drive arid
a 2022 Tractor Feed Printer, fill you really have to bring to the
meetings is unique hardware to show off.* software to trade (not
copyrighted).■ a medium for copying programs arid some friends.

THIRD CLASS POSTAGE

The PRPER PERMIT NO. 96
J . ^ 2 4 EAST SETAUKET, NY

East ~ Setauket.. NV 11733

